冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共19页。试卷主要包含了现有甲等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式﹣2x+4<0的解集是( )A.x> B.x>﹣2 C.x<2 D.x>22、若,则下列式子一定成立的是( )A. B. C. D.3、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )A.2 B.7 C.11 D.104、现有甲、乙两种运输车将46吨物资运往A地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车( )辆.A.5 B.6 C.7 D.85、如果a>b,那么下列结论中,正确的是( )A.a﹣1>b﹣1 B.1﹣a>1﹣b C. D.﹣2a>﹣2b6、若x<y,则下列不等式中不成立的是( )A.x-5<y-5 B.x<y C.x-y<0 D.-5x<-5y7、x=-1不是下列哪一个不等式的解( )A.2x+1≤-3 B.2x-1≥-3 C.-2x+1≥3 D.-2x-1≤38、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.99、如果x>y,则下列不等式正确的是( )A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y10、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用数轴表示不等式的解集,应记住下面的规律: ①大于向______画;小于向______画;②>,<画______圆.空心圆表示______此点2、若三个不同的质数,,满足,则不等式的解集为__.3、若,则______(填“>”或“=”或“<”).4、对,,定义一种新运算,规定:,,,其中,为非负数.(1)当时,若,,,,1,,则的值是 __,的值是 __;(2)若,2,,,2,,设,则的取值范围是 __.5、已知x为不等式组的解,则的值为______.三、解答题(5小题,每小题10分,共计50分)1、(1)解方程组:(2)解不等式组:2、用不等式表示下列数量关系:(1)a是正数;(2)x比-3小;(3)两数m与n的差大于53、今年“六一”前夕,某文具店花费2200元采购了A、B两种型号的文具进行销售,其进价和售价之间的关系如表:型号进价(元/个)售价(元/个)A型1012B型1520 若两种型号的文具按表中售价全部售完,则该商店可以盈利600元.(1)问该商店当初购进A、B两种型号文具各多少个?(2)“六一”当天,A、B两种型号文具各剩下20%还未卖出,文具店老板在第二天降价出售,且两种型号文具每件降了同样的价格,要使得这批文具售完后的总盈利不低于546元,那么这两种型号的文具每件最多降多少元?4、某企业为了做好“复工复产”期间的人员防护工作,购买了一定数量的一次性防护口罩和N95口罩,这两种口罩的规格.售价如下表所示:(购买时必须整包购买) 数量售价一次性防护口罩50只/包100元/包N95口罩3只/包60元/包(1)已知第一批购得两种口罩共80包,其中一次性防护口罩比N95口罩多买了30包,那么N95口罩买了____包.(2)已知第二批购得两种口罩共计3240只,花费10800元,问一次性防护口罩和N95口罩分别购买了多少包?(3)在第三批购买时,一次性防护口罩价格有所调整,每包降低了10元,N95口罩价格不变,如果该单位第三批总共购买了100包口罩,花费不超过8100元,那么最多能购买一次性防护口罩多少包?5、在新型冠状病毒疫情影响下,武汉医疗物资紧缺,某机构派甲、乙两种运输车共10辆.已知甲种运输车载重,乙种运输车载重,运往武汉的救援物资不少于,则甲种运输车至少应安排多少辆? -参考答案-一、单选题1、D【解析】【分析】首先通过移项得到,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:,两边同时除以-2可得:,∴原不等式的解集为:,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.2、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵,∴a+1>b+1,故选项A不符合题意;∵,∴,故选项B符合题意;∵,∴-2a<-2b,故选项C不符合题意;∵,∴,故选项D不符合题意;故选:B.【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.3、B【解析】【分析】先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.【详解】解:由,得:,由,得:,不等式组的解集为,,解得;解关于的方程得:,方程的解为非负整数,或3或6或9,解得或2或3.5或5,所以符合条件的所有整数的和,故选:B.【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.4、B【解析】【分析】现用甲,乙两种运输车将46吨抗旱物资运往灾区,此题的等量关系是:甲种车运输物资数+乙种车运输物资数≥46吨.设甲种运输车至少应安排x辆,根据不等关系就可以列出不等式,求出x的值.【详解】解:设乙种车安排了x辆,4x+5×5≥46解得x≥.因为x是正整数,所以x最小值是6.则乙种车至少应安排6辆.故选:B.【点睛】本题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,理解汽车的载重量与货物的数量之间的关系是解决本题的关键.5、A【解析】【分析】直接利用不等式的基本性质判断即可得出答案.【详解】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.6、D【解析】【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x<y,∴x-5<y-5,故不符合题意; B. ∵x<y,∴,故不符合题意; C. ∵x<y,∴x-y<0,故不符合题意; D. ∵x<y,∴,故符合题意;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.7、A【解析】【分析】解出各个不等式,然后检验-1是否在解集内,就可以进行判断.【详解】解:A:2x+1≤-3,解得x≤-2,-1不在解集内,故符合题意.B:2x-1≥-3,解得x≥-1,-1在解集内,故不符合题意.C:-2x+1≥3中,解得x≤-1,-1在解集内,故不符合题意.D:-2x-1≤3中,解得x≥-2,-1在解集内,故不符合题意.故选:A.【点睛】本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤.8、C【解析】【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9、C【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A.∵x>y,∴x﹣1>y﹣1,故本选项不符合题意;B.∵x>y,∴5x>5y,故本选项不符合题意;C.∵x>y,∴,故本选项符合题意; D.∵x>y,∴﹣2x<﹣2y,故本选项不符合题意;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.10、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.二、填空题1、 右 左 空心 不含【解析】略2、【解析】【分析】根据题意进行变形可得,得出a能被2000整除且a,b,c为不同的质数,可得或5,据此进行分类讨论:当,;当,,分别进行求解试算,确定,,,代入不等式进行求解即可得.【详解】解:,,∴a能被2000整除且a,b,c为不同的质数,或5,当,,,,,,当,,(不合题意),,,,,即,解得.故不等式的解集为.故答案为:.【点睛】题目主要考查整除的性质及质数的定义,求不等式的解集等,理解题意,将等式进行化简,然后分类讨论是解题关键.3、<【解析】【分析】根据不等式的性质:①不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变,据此变形即可得.【详解】解:∵,∴,∴,故答案为:.【点睛】题目主要考查不等式的性质,深刻理解不等式的性质进行变形是解题关键.4、 2 1 【解析】【分析】(1)根据定义列出二元一次方程组,解方程即可求得;(2)根据定义列出二元一次方程组,用含的代数式表示,,根据,为非负数,列出一元一次不等式,解不等式组求得c的取值范围,进而求得H的取值范围.【详解】(1),,,当时,若,,,,1,可得:,解方程组得:.故答案为2,1.(2)当,2,,,2,时,,,得:,用含的代数式表示,得:.,为非负数,,解不等式组得:.,随的增大而增大,当时,,当时,..故答案为.【点睛】本题考查了二元一次方程组与一元一次不等式组的应用,根据新定义列出方程组和不等式组是解题的关键.5、2【解析】【分析】解不等式组得到x的范围,再根据绝对值的性质化简.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:,∴===2故答案为:2.【点睛】本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.三、解答题1、 (1);(2) 2≤x≤3【解析】【分析】(1)用加减消元法将两个方程组相加求出x的值,然后再代入第一个方程求出y的值;(2)根据解一元一次不等式的步骤,先去分母,去括号,移项,合并同类项,系数化为1即可求出两个一元一次不等式的解集即可求解.【详解】解:(1)由题意可知:,将①+②得到:,解得:,回代①中,得到:,故方程组的解为:;(2)由题意可知:,将①中不等式两边同时乘以3,得到:1+7x-3≥6x,解得:x≥2,将②中不等式移项,合并同类项,得到:2x≤6,解得:x≤3,故不等式组的解集为:2≤x≤3.【点睛】本题考查了二元一次方程组的解法及一元一次不等式组的解法,属于基础题,计算过程中细心即可.2、 (1)a > 0(2)x <-3(3)m-n >5【解析】略3、 (1)该商店当初购进A型号文具100个,B型号文具80个(2)1.5元【解析】【分析】(1)设该商店当初购进A型号文具x个,B型号文具y个,根据用2200元购进的A、B两种型号的文具全部售出后可盈利600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设这两种型号的文具每件降m元,利用这批文具售完后的总盈利=600﹣剩余文具的数量×每件降低的价格,结合使得这批文具售完后的总盈利不低于546元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设该商店当初购进A型号文具x个,B型号文具y个,依题意得:, 解得:. 答:该商店当初购进A型号文具100个,B型号文具80个;(2)(2)设这两种型号的文具每件降m元,依题意得:600﹣(100+80)×20%m≥546,解得:m≤1.5.答:这两种型号的文具每件最多降1.5元.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意利用方程组或是不等式解决实际问题是解题的关键.4、 (1)25(2)一次性防护口罩60包,N95口罩80包(3)最多购买一次性防护口罩70包【解析】【分析】(1)设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,根据第一批购得两种口罩共80包,即可得出关于x的一元一次方程,解之即可得出结论;(2)设第二批购得一次性防护口罩a包,N95口罩b包,根据第二批购得两种口罩共计3240只且共花费10800元,即可得出关于a,b的二元一次方程组,解之即可得出结论;(3)设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,根据总价=单价×数量结合总价不超过8100元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,依题意,得:x+x+30=80,解得:x=25.故答案为:25.(2)解:设第二批购得一次性防护口罩a包,N95口罩b包,依题意,得:,解得:.答:第二批购得一次性防护口罩60包,N95口罩80包.(3)解:设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,依题意,得:(100−10)m+60(100−m)≤8100,解得:m≤70.答:第三批最多能购买一次性防护口罩70包.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)根据各数量之间的关系,正确列出一元一次不等式.5、甲种运输车至少应安排6辆.【解析】【分析】设应安排甲种运输车x辆,则安排乙种运输车(10−x)辆,根据运往武汉的救援物资不少于91t,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设应安排甲种运输车x辆,则安排乙种运输车(10−x)辆,依题意得:10x+8(10−x)≥91,解得:x≥.又∵x为整数,∴x的最小值为6.答:甲种运输车至少应安排6辆.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共18页。试卷主要包含了已知关于x,关于x的方程3﹣2x=3等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共17页。试卷主要包含了下列不等式是一元一次不等式的是,下列说法正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共19页。试卷主要包含了如图,数轴上表示的解集是,若m<n,则下列各式正确的是,下列说法中不正确的个数有,某矿泉水每瓶售价1.5元,现甲等内容,欢迎下载使用。