初中数学第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题
展开
这是一份初中数学第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共17页。试卷主要包含了某矿泉水每瓶售价1.5元,现甲,已知x=1是不等式等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x、y的二元一次方程组的解满足,且关于s的不等式组恰好有4个整数解,那么所有符合条件的整数a的个数为( )A.4个 B.3个 C.2个 D.1个2、若m>n,则下列不等式不成立的是( )A.m+4>n+4 B.﹣4m<﹣4n C. D.m﹣4<n﹣43、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.94、已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.a﹣1>b﹣1 B.﹣a+2<﹣b+2 C.3a<3b D.5、如果有理数a<b,那么下列各式中,不一定成立的是( )A.4-a>4-b B.2a<2b C.a2<ab D.a-3<b-1.6、若不等式(m-2)x>n的解集为x>1,则m,n满足的条件是( ).A.m=n-2且m>2 B.m=n-2且m<2C.n=m-2且m>2 D.n=m-2且m<27、若关于x的不等式组无解,则m的取值范围是( )A. B. C. D.8、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x的取值范围是( )A.x>20 B.x>40 C.x≥40 D.x<409、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤110、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、求不等式组的解集的过程,叫做__________.2、在2021年12月,重庆两江商务中心炫彩开业,某商家为了提升销售额推出了组合销售活动,将草莓芝士、樱桃奶油布丁、迷你榴莲慕斯搭配为A,B两种组合,其中一个A组合中有4个蓝莓芝士、7个撄桃奶油布丁、3个迷你榴莲慕斯;一个B组合中有6个蓝莓芝士、12个樱桃奶油布门、4个迷你榴莲慕斯.经核算,一个A组合的成本为120元,一个B组合的成本为180元(每种组合的成本为该组合中蓝莓芝士、樱桃奶油布丁、迷你榴莲慕斯的成本之和),已知蓝莓芝士、樱桃奶油布丁、迷你榴莲慕斯的成本单价均为整数且都超过5元,则迷你榴莲慕斯的成本为________元/个.3、不等式2x﹣3<4x的最小整数解是____.4、若实数满足,则的取值范围为___________.5、不等式组的解集为 ______.三、解答题(5小题,每小题10分,共计50分)1、解不等式组,并写出不等式组的整数解2、在“爱心传递”活动中,某校学生积极捐款. 其中六年级的两个班级的捐款情况如下表:班 级人数捐款总额(元)人均捐款额(元)(1)班 (2)班 合计8090011.25小杰在统计时不小心污损了其中的部分数据,但他还记得以下信息:信息一:六(2)班的捐款额比六(1)班多60元;信息二:六(1)班学生平均每人捐款的金额不小于10元;请根据表格中留下的数据和以上信息,帮助小杰同学解决下列问题:(1)六(1)班和六(2)班的捐款总额各是多少元?(2)六(2)班的学生数至少是多少人?3、根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.10x-1>7x4、已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?5、已知关于x的不等式①x+a>7的解都能使不等式②成立,求a的取值范围. -参考答案-一、单选题1、C【解析】【分析】先求出方程组和不等式的解集,再求出a的范围,最后得出答案即可.【详解】解:解方程组得:,∵关于x、y的二元一次方程组的解满足,∴≥,解得:a≥-,∵关于s的不等式组恰好有4个整数解,即4个整数解为1,0,-1,-2,∴,解得-2≤a<1,∴≤a<1,∴符合条件的整数a的值有:-1,0,共2个,故选:C.【点睛】本题主要考查了解二元一次方程和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、D【解析】【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴,故该选项正确,不符合题意;C.∵m>n,∴,故该选项正确,不符合题意;D.∵m>n,∴,故该选项错误,符合题意;故选:D.【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.3、C【解析】【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、C【解析】【分析】利用不等式的基本性质可判断A,B,C,再利用特值法令可判断D,从而可得答案.【详解】解: a<b, 故A不符合题意,C符合题意; 故B不符合题意;当时,满足 而 故D不符合题意;故选C【点睛】本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.5、C【解析】【分析】根据a>b,应用不等式的基本性质,逐项判断即可.【详解】解:∵a<b,∴-a>-b,∴4-a>4-b,∴选项A不符合题意;∵a<b,∴2a<2b,∴选项B不符合题意;∵a<b,∴a2<ab(),或a2=ab(a=0), ∴选项C符合题意;∵a<b,∴a-3<b-1,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6、C【解析】略7、D【解析】【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围.【详解】解:解不等式得:,解不等式得:,∵不等式组无解,∴,解得:,故选:D.【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.8、B【解析】略9、A【解析】【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围.【详解】解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,∴ 且 ,即﹣4(﹣2a+2)≤0且﹣(a+2)>0,解得:a<﹣2.故选:A.【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.10、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.二、填空题1、解不等式组【解析】略2、18【解析】【分析】设蓝莓芝士成本为x元,樱桃奶油布丁成本为y元,迷你榴莲慕斯的成本为z元,根据A组合的成本为120元,B组合的成本为180元,列出方程组求解即可.【详解】解:设蓝莓芝士成本为x元,樱桃奶油布丁成本为y元,迷你榴莲慕斯的成本为z元,由题意猎房出组为: ,解得:,∵x,y,z都为大于5的整数,∴,解得:,∵z为整数,∴z可取:16,17,18,当z=16或z=17时,x和y均不为整数,故舍去;当z=18时,x=6,y=6符合题意;∴z=18,∴迷你榴莲慕斯的成本为18元.故答案为:18.【点睛】本题考查了三元一次方程组的应用及一元一次不等式组的应用,解题的关键是:找准等量关系,正确列出三元一次方程组.3、【解析】【详解】解:,,,最小整数解是,故答案为.【点睛】本题考查了一元一次不等式的整数解,解题的关键是求出不等式的解集.4、【解析】【分析】先根据已知等式可得,从而可得,再根据绝对值的非负性、偶次方的非负性求出的取值范围,由此即可得出答案.【详解】解:由得:,则,,,解得,又,,,即的取值范围为,故答案为:.【点睛】本题考查了绝对值的非负性、偶次方的非负性、一元一次不等式组的应用,熟练掌握绝对值和偶次方的非负性是解题关键.5、1≤x<7【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x﹣3<4,得:x<7,解不等式≥1,得:x≥1,则不等式组的解集为1≤x<7,故答案为:1≤x<7.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题1、不等式组的解集为,不等式组的整数解为0,1.【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后写出它的整数解即可得.【详解】解:,解不等式①得:,解不等式②得:,则不等式组的解集为,不等式组的整数解为0,1.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.2、 (1)六(1)班的捐款额为420元,六(2)班的捐款额为480元(2)38人【解析】【分析】(1)设六(1)班的捐款额为元,从而可得六(2)班的捐款额为元,再根据合计总捐款额为900元建立方程,解方程即可得;(2)先求出六(1)班学生数最多不超过42人,再根据合计的学生总人数即可得出答案.(1)解:设六(1)班的捐款额为元,则六(2)班的捐款额为元,由题意得:,解得,则,答:六(1)班的捐款额为420元,六(2)班的捐款额为480元;(2)解:因为六(1)班学生平均每人捐款的金额不小于10元,所以六(1)班学生数最多不超过(人),所以六(2)班学生数至少是(人),答:六(2)班的学生数至少是38人.【点睛】本题考查了一元一次方程的应用、不等式的应用,正确建立方程和理解不等式的概念是解题关键.3、x>【解析】【分析】根据不等式的性质,可得答案.【详解】解:10x-1>7x,两边都减7x、加1,得10x-7x-1+1>7x-7x+1,3x>1,两边都除以3,得x>;【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.4、147【解析】【分析】由12和8的最小公倍数为24,可设该校六年级学生有(24x+3)人,根据“该校六年级学生超过130人,而不足150人”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可确定x的值,再将其代入(24x+3)中即可得出结论.【详解】解:∵12和8的最小公倍数为24,∴设该校六年级学生有(24x+3)人.依题意,得:,解得:5<x<6.又∵x为正整数,∴x=6,∴24x+3=147(人).答:该校六年级学生有147人.【点睛】本题考查了一元一次不等式组.解题的关键在于通过确定两数的最小公倍数得到数量关系,正确的列不等式组.5、【解析】【分析】先求出不等式①②的解集,然后根据关于x的不等式①的解都能使不等式②成立得出,求解即可得.【详解】解:解不等式①得:,解不等式②得:,∵关于x的不等式①的解都能使不等式②成立,∴,解得:.【点睛】题目主要考查求不等式的解集,理解题意,熟练掌握解不等式的方法是解题关键.
相关试卷
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题,共17页。试卷主要包含了对有理数a,b定义运算,不等式﹣2x+4<0的解集是,不等式的最小整数解是,若m<n,则下列各式正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题,共19页。试卷主要包含了下列四个说法,某矿泉水每瓶售价1.5元,现甲等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共17页。试卷主要包含了不等式的解集为等内容,欢迎下载使用。