数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共17页。试卷主要包含了关于x的方程3﹣2x=3,已知关于x,不等式4x-8≤0的解集是,对有理数a,b定义运算等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在数轴上表示某不等式组的解集,如图所示,则这个不等式组可能是( )A. B. C. D.2、若,那么下列各式中正确的是( )A. B.C. D.3、若关于的方程有负分数解,关于的不等式组的解集为,则符合条件的所有整数的个数为( )A.3 B.4 C.6 D.74、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A.5 B.4 C.3 D.25、已知关于x、y的二元一次方程组的解满足,且关于s的不等式组恰好有4个整数解,那么所有符合条件的整数a的个数为( )A.4个 B.3个 C.2个 D.1个6、不等式4x-8≤0的解集是( )A.x≥-2 B.x≤-2C.x≥2 D.x≤27、用不等式表示“的5倍大于-7”的数量关系是( )A.5<-7 B.5>-7 C.>7 D.7<58、对有理数a,b定义运算:a✬b=ma +nb,其中m,n是常数,如果3✬4=2,5✬8>2,那么n的取值范围是( )A.n> B.n< C.n>2 D.n<29、下列各式中,是一元一次不等式的是( )A.5-3<8 B.2x-1< C.≥8 D.+2x≤1810、若不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是( )A.m>- B.m<- C.m<- D.m>-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次知识竞赛一共有26道题,答对一题得4分,不答得0分,答错一题扣2分,小明有1道题没答,竞赛成绩不少于88分,则小明至少答对______题.2、只含一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做__________.解一元一次不等式,则要根据__________,将不等式逐步化为x>a( x≥a)或x<a ( x≤a)的形式.3、一般地,一个含有未知数的不等式的所有的解,组成这个______.求不等式的解集的过程叫______.4、不等式的最大整数解是_______.5、不等式2x﹣3<4x的最小整数解是____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组:,并写出它的所有非负整数解.2、求不等式组的自然数解.并把它的解集在数轴上表示出来.3、解不等式组:,并把不等式组的解集表示在数轴上.4、解不等式:,并把它的解集在数轴上表示出来.5、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具? -参考答案-一、单选题1、D【解析】【分析】分别解不等式求出不等式组的解集,对应数轴得到答案.【详解】解:解不等式,得x>4,解不等式2x-4<x,得x<4,解不等式x+10,解得x-1,解不等式x+10,解得x-1,∴不等式组无解,不等式组的解集为x>4,不等式组的解集为x-1,不等式组的解集为,由数轴可得不等式组的解集为,故选:D.【点睛】此题考查了求不等式组的解集,正确掌握不等式的性质求解不等式及利用数轴表示不等式的解集的方法是解题的关键.2、C【解析】【分析】根据不等式的性质判断.【详解】解:∵,∴a+1>b+1,故选项A错误;∵,∴-a<-b,故选项B错误;∵,∴,故选项C正确;∵,∴,故选项D错误;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.3、B【解析】【分析】把a看作已知数表示出不等式组的解集,根据已知解集确定出a的范围,将a的整数解代入方程,检验方程解为负分数确定出所有a的值,即可求出积.【详解】解:解不等式,得:,解不等式,得:,不等式组的解集为,,解得,解方程得,, ∵方程有负分数解,∴,∴,∴的取值为, ∴整数的值为-3,-2,-1,0,1,2,3,把代入方程得:,即,符合题意;把代入方程得:,即,不符合题意;把代入方程得:,即,符合题意;把代入方程得:,即,不符合题意;把代入方程得:,即,符合题意;把代入方程得:,即,不符合题意;把代入方程得:,即,符合题意.符合条件的整数取值为,,1,3,故选:B.【点睛】此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握解不等式组和方程的基本技能是解本题的关键.4、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.【详解】解:解方程3﹣2x=3(k﹣2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,,则,符合条件的整数的值的和为,故选A.【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.5、C【解析】【分析】先求出方程组和不等式的解集,再求出a的范围,最后得出答案即可.【详解】解:解方程组得:,∵关于x、y的二元一次方程组的解满足,∴≥,解得:a≥-,∵关于s的不等式组恰好有4个整数解,即4个整数解为1,0,-1,-2,∴,解得-2≤a<1,∴≤a<1,∴符合条件的整数a的值有:-1,0,共2个,故选:C.【点睛】本题主要考查了解二元一次方程和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6、D【解析】【分析】根据题意先移项,再把x的系数化为1即可得出答案.【详解】解:不等式4x-8≤0,移项得,4x≤8,把x的系数化为1得,x≤2.故选:D.【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.7、B【解析】【分析】根据题意用不等式表示出x的5倍大于-7,即可得到答案.【详解】解:由题意可得,x的5倍大于-7,用不等式表示为:5x>-7,故选:B.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.8、A【解析】【分析】先根据新运算的定义和3✬4=2将用表示出来,再代入5✬8>2可得一个关于的一元一次不等式,解不等式即可得.【详解】解:由题意得:,解得,由5✬8>2得:,将代入得:,解得,故选:A.【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.9、D【解析】【分析】一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.根据一元一次不等式的定义逐项判断即可.【详解】A:不含有未知数,不是一元一次不等式,故本选项不符合题意;B:不是整式,故本选项不符合题意;C:不是整式,故本选项不符合题意;D:是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,是一元一次不等式,故本选项符合题意.故选:D.【点睛】本题考查一元一次不等式的定义, 一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.10、C【解析】【分析】求出不等式-1≤2-x的解,求出不等式3(x−1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【详解】解不等式-1≤2-x,得:x≤,解不等式3(x-1)+5>5x+2(m+x),得:x<,∵不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴>,解得:m<-.故选:C【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.二、填空题1、23【解析】【分析】设小明至少答对 题,则答错 题,根据“小明有1道题没答,竞赛成绩不少于88分,”列出不等式,即可求解.【详解】解:设小明答对 题,则答错 题,根据题意得: ,解得: ,答:小明至少答对23题.故答案为:23【点睛】本题主要考查了一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.2、 一元一次不等式 不等式的性质【解析】略3、 不等式的解集 解不等式【解析】略4、2【解析】【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.5、【解析】【详解】解:,,,最小整数解是,故答案为.【点睛】本题考查了一元一次不等式的整数解,解题的关键是求出不等式的解集.三、解答题1、﹣2<x≤2,非负整数解为0,1,2.【解析】【分析】分别得出两个不等式的解集,找出两个解集的公共部分即可得不等式组的解集,进而可得不等式组的非负整数解.【详解】,解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,∴非负整数解为0,1,2.【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.2、0,1,2,3,数轴见解析【解析】【分析】首先分别解出两个不等式,再根据:大大取大,小小取小,大小小大取中,大大小小取不着,确定出两个不等式的公共解集即可.【详解】解:,由不等式①得:x>﹣1,由不等式②得:x≤3,所以不等式组的解集为:﹣1<x≤3,解集在数轴上表示为:所以不等式组的自然数解为0,1,2,3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解题的关键.3、,数轴表示见解析【解析】【分析】按照解一元一次不等式组的方法和步骤解不等式组,再在数轴上表示解集即可.【详解】,由①得;由②得;数轴表示为:所以,原不等式组的解集是.【点睛】本题考查了一元一次不等式组的解法,解题关键是掌握一元一次不等式组的解法和步骤,会在数轴上表示解集.4、,数轴见解析【解析】【分析】先去分母,再去括号,移项、合并同类项,把的系数化为1.【详解】解:去分母得,,去括号得,,移项、合并同类项得,,把的系数化为1得,.在数轴上表示此不等式的解集如下:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、 (1)甲种文具需要20元,一个乙种文具需要10元(2)20【解析】【分析】(1)设购买一个甲种文具需要x元,一个乙种文具需要y元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x元,一个乙种文具需要y元,依题意得:,解得:,答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,依题意得:20m+10(30﹣m)≤500,解得:m≤20.答:至多需要购买20个甲种文具.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试达标测试,共23页。试卷主要包含了已知△ABC的内角分别为∠A,若三角形的两边a等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共20页。试卷主要包含了下列各数中,是不等式的解的是,若,则下列各式中正确的是等内容,欢迎下载使用。
这是一份数学第十章 一元一次不等式和一元一次不等式组综合与测试一课一练,共16页。试卷主要包含了下列说法正确的是,已知关于x,若成立,则下列不等式成立的是等内容,欢迎下载使用。