2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题
展开
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题,共18页。试卷主要包含了已知x=1是不等式,不等式的最小整数解是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.92、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )A.27 B.22 C.13 D.93、如果a<b,那么下列不等式中不成立的是( )A.3a<3b B.-3a<-3b C.-a>-b D.3+a<3+b4、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤15、把不等式组的解集表示在数轴上,正确的是( )A. B.C. D.6、不等式的最小整数解是( )A. B.3 C.4 D.57、已知8x+1<-2x,则下列各式中正确的是( )A.10x+1>0 B.10x+1<0 C.8x-1>2x D.10x>-18、不等式的解集在数轴上表示正确的是 ( )A. B.C. D.9、在 ① ;② ;③ ;④ ;⑤ 中,属于不等式的有 A. 个 B. 个 C. 个 D. 个10、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是( )A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、x的取值与代数式ax+b的对应值如表:x……﹣2﹣10123……ax+b……97531﹣1……根据表中信息,得出了如下结论:①b=5;②关于x的方程ax+b=-l的解是x=3;③a+b>-a+b;④ax+b的值随着x值的增大而增大.其中正确的是______.(写出所有正确结论的序号)2、定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式﹣3⊕x<15的解为 _____.3、若三个不同的质数,,满足,则不等式的解集为__.4、一次中学生宪法知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.若小丽答了所有的题,要想获得优胜奖(75分及以上),则她至少要答对 _____道题.5、不等式2x﹣3<4x的最小整数解是____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组,并写出不等式组的整数解2、(1)解不等式组,并把解集在数轴上表示出来.(2)计算:1024×243÷25.3、(1)解不等式:5x+3≥2(x+3).(2)解不等式2x-1>.4、解不等式:2(3﹣y)≤4﹣3(y﹣1).5、解不等式组: ,并把解集在数轴上表示出来. -参考答案-一、单选题1、C【解析】【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、A【解析】【分析】先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.【详解】解:解不等式①,得: ,解不等式②,得: ,∴不等式的解集为,∵不等式组有且只有三个整数解,∴ ,解得: ,∵m为整数,∴ 取5,6,7,8,9,10,11,12,13,14,15,,解得: ,∴当取 时,x,y均为整数,∴符合条件的所有m的和为 .故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.3、B【解析】【分析】根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.【详解】∵a<b,3是正数,∴3a<3b,故A不符合题意;∵a<b,-3是负数,∴-3a>-3b,故B不成立,符合题意;∵a<b,-1是负数,∴-a>-b,故C成立,不符合题意;∵a<b,3是正数,∴3+a<3+b,故D成立,不符合题意;故选B.【点睛】本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.4、A【解析】【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围.【详解】解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,∴ 且 ,即﹣4(﹣2a+2)≤0且﹣(a+2)>0,解得:a<﹣2.故选:A.【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.5、D【解析】略6、C【解析】【分析】先求出不等式解集,即可求解.【详解】解: 解得: 所以不等式的最小整数解是4.故选:C.【点睛】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.7、B【解析】【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x+1<-2x的两边同加上2x,不等号的方向不变,即10x+1<0.故选:B.【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.8、B【解析】【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:,移项得: 解得: 所以原不等式得解集:.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.9、C【解析】【分析】用不等号连接而成的式子叫不等式,根据不等式的定义即可完成.【详解】①是等式;③是代数式;②④⑤是不等式;即属于不等式的有3个故选:C【点睛】本题考查了不等式的概念,理解不等式的概念是关键.10、B【解析】【分析】观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.二、填空题1、①②【解析】【分析】根据题意得:当 时, ,可得①正确;当 时,,可得关于x的方程ax+b=-l的解是x=3;故②正确;再由当 时,,当 时,,可得③错误;然后求出 ,,可得当x的值越大, 越小,即 也越小,可得④错误;即可求解.【详解】解:根据题意得:当 时, ,故①正确; 当 时,,∴关于x的方程ax+b=-l的解是x=3;故②正确;当 时,,当 时,,∵ ,∴ ,故③错误;∵ ,当 时,,∴ ,解得: ,∴ ,∴当x的值越大, 越小,即 也越小,∴ax+b的值随着x值的增大而减小,故④错误;所以其中正确的是①②.故答案为:①②【点睛】本题主要考查了求代数式的值,解二元一次方程组,不等式的性质,理解表格的意义是解题的关键.2、【解析】【分析】根据题目中所给的新运算先进行化简,然后再解不等式求解即可.【详解】解:∵,,.∵,∴,∴.故答案为:.【点睛】题目主要考查整式的混合运算及解不等式,理解题中定义的新运算,熟练掌握解不等式的方法是解题关键.3、【解析】【分析】根据题意进行变形可得,得出a能被2000整除且a,b,c为不同的质数,可得或5,据此进行分类讨论:当,;当,,分别进行求解试算,确定,,,代入不等式进行求解即可得.【详解】解:,,∴a能被2000整除且a,b,c为不同的质数,或5,当,,,,,,当,,(不合题意),,,,,即,解得.故不等式的解集为.故答案为:.【点睛】题目主要考查整除的性质及质数的定义,求不等式的解集等,理解题意,将等式进行化简,然后分类讨论是解题关键.4、17【解析】【分析】设小丽至少答对道题,则得分为分,失分为分,再列不等式即可.【详解】解:设小丽至少答对道题,则 解得: 为正整数,所以的最小值为17,答:小丽至少答对道题.故答案为:17【点睛】本题考查的是一元一次不等式的应用,理解题意列出不等式是解本题的关键.5、【解析】【详解】解:,,,最小整数解是,故答案为.【点睛】本题考查了一元一次不等式的整数解,解题的关键是求出不等式的解集.三、解答题1、不等式组的解集为,不等式组的整数解为0,1.【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后写出它的整数解即可得.【详解】解:,解不等式①得:,解不等式②得:,则不等式组的解集为,不等式组的整数解为0,1.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.2、(1),数轴图见解析;(2)7776.【解析】【分析】(1)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集,然后将其在数轴上表示出来即可得;(2)根据、同底数幂的除法法则、积的乘方的逆用即可得.【详解】解:(1),解不等式①得:,解不等式②得:,则不等式组的解集为,将解集在数轴上表示出来如下:(2)原式.【点睛】本题考查了解一元一次不等式组、同底数幂的除法法则、积的乘方的逆用,熟练掌握不等式组的解法和各运算法则是解题关键.3、(1)x≥1;(2)x>1【解析】【分析】(1)先去括号,然后移项、合并同类项、系数化1,即可求解;(2)先去分母,然后移项、合并同类项、系数化1,即可求解.【详解】(1)5x+3≥2(x+3),去括号得:5x+3≥2x+6,移项得:5x-2x≥6-3,合并同类项得:3x≥3,解得:x≥1.(2),去分母,得4x-2>3x-1,移项,得:4x-3x>2-1,合并同类项,得:x>1.【点睛】本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化1.4、y≤1【解析】【分析】去括号、移项、合并同类项即可求解.【详解】解:去括号,得6﹣2y≤4﹣3y+3,移项,得﹣2y+3y≤4+3﹣6,合并同类项,得y≤1.【点睛】此题考查了解一元一次不等式,正确掌握解不等式的步骤及运算法则是解题的关键.5、x≤2.5,数轴见解析.【解析】【分析】先分别求出两个不等式的解集,可得不等式组的解集,再在数轴上表示出来,即可求解.【详解】解:解不等式,得:x<5,解不等式3(x+2)≥6﹣2(1﹣x),得:x≤2.5,则不等式组的解集为x≤2.5,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的基本步骤是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习,共18页。试卷主要包含了下列各式,不等式的解集为等内容,欢迎下载使用。
这是一份数学冀教版第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共17页。试卷主要包含了若,则下列各式中正确的是,下列说法正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共16页。试卷主要包含了下列各式等内容,欢迎下载使用。