初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试单元测试随堂练习题
展开这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试单元测试随堂练习题,共24页。试卷主要包含了已知点A,如图是象棋棋盘的一部分,如果用,点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、若点在轴上,则点的坐标为( )
A. B. C. D.
3、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )
A. B. C. D.
4、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )
A.﹣1 B.1 C.﹣2 D.2
5、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )
A.相 B.马 C.炮 D.兵
6、点P(-3,4)到坐标原点的距离是( )
A.3 B.4 C.-4 D.5
7、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、平面直角坐标系中,点到y轴的距离是( )
A.1 B.2 C.3 D.4
9、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
A.离北京市100千米 B.在河北省
C.在怀来县北方 D.东经114.8°,北纬40.8°
10、在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点A在第二象限内,AC⊥OB于点C,B(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.
2、在平面直角坐标系中,一个长方形ABCD三个顶点的坐标分别为A(1,2),B(1,﹣4),D(﹣3,2),则点C坐标为 _____.
3、点到轴的距离为______,到轴的距离为______.
4、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.
5、如果点A的坐标为(2,﹣1),点B的坐标为(5,3),那么A、B两点的距离等于 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系xOy中,经过点M(0,m),且平行于x轴的直线记作直线y=m.我们给出如下定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得到点P',则称点P'称为点P关于x轴和直线y=m的二次反射点.
(1)点A(5,3)关于x轴和直线y=1的二次反射点A'的坐标是 ;
(2)点B(2,﹣1)关于x轴和直线y=m的二次反射点B'的坐标是(2,﹣5),m= ;
(3)若点C的坐标是(0,m),其中m>0,点C关于x轴和直线y=m的二次反射点是C',求线段CC'的长(用含m的式子表示);
(4)如图,正方形的四个顶点坐标分别为(0,0)、(2,0)、(2,2)、(0,2),若点P(1,4),Q(1,5)关于x轴和直线y=m的二次反射点分别为P',Q',且线段P'Q'与正方形的边没有公共点,直接写出m的取值范围.
2、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).
(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);
(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2).
3、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
(1)如图1,求的度数;
(2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
(3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
4、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)
(1)画出关于原点对称的图形,并写出点的坐标;
(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
5、如图所示,在平面直角坐标系中,的顶点坐标分别是,和.
(1)已知点关于轴的对称点的坐标为,求,的值;
(2)画出,且的面积为 ;
(3)画出与关于轴成对称的图形,并写出各个顶点的坐标.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.
【详解】
解:∵点关于轴对称的点是,
∵,
∴点关于轴对称的点在第三象限.
故选:C.
【点睛】
本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.
2、B
【解析】
【分析】
根据y轴上的点的坐标特点可得a+2=0,再解即可.
【详解】
解:由题意得:a+2=0,
解得:a=-2,
则点P的坐标是(0,-2),
故选:B.
【点睛】
此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.
3、C
【解析】
【分析】
利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
【详解】
解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,
点B的横坐标是:33=6,纵坐标为:5+4=1,
即(6,1).
故选:C.
【点睛】
本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
4、B
【解析】
【分析】
关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.
【详解】
解:∵与点关于y轴对称,
∴,,
∴,
故选:B.
【点睛】
题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.
5、C
【解析】
【分析】
根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.
【详解】
解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;
故选C.
【点睛】
本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.
6、D
【解析】
【分析】
利用两点之间的距离公式即可得.
【详解】
解:点到坐标原点的距离是,
故选:D.
【点睛】
本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.
7、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、A
【解析】
【分析】
根据点到轴的距离是横坐标的绝对值,可得答案.
【详解】
解:∵,
∴点到轴的距离是
故选:A
【点睛】
本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.
9、D
【解析】
【分析】
若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
【详解】
离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
东经114.8°,北纬40.8°为准确的位置信息.
故选:D.
【点睛】
本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
10、C
【解析】
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.
【详解】
解:∵第二象限的点P到x轴的距离是2,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是2,
∴点P的坐标为(-3,2).
故选:C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
二、填空题
1、
【解析】
【分析】
利用直角三角形的性质和勾股定理求出OC和AC的长,再运用三角形面积公式求出即可.
【详解】
解:∵AC⊥OB,
∴
∵∠AOB=60°,
∴
∵OA=4,
∴
在Rt△ACO中,
∴
故答案为:
【点睛】
本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OC和AC的长是解答本题的关键.
2、(﹣3,﹣4)
【解析】
【分析】
根据长方形的性质求出点C的横坐标与纵坐标,即可得解.
【详解】
如图,
∵A(1,2),B(1,﹣4),D(﹣3,2),
∴点C的横坐标与点D的横坐标相同,为﹣3,
点C的纵坐标与点B的纵坐标相同,为﹣4,
∴点D的坐标为(﹣3,﹣4).
故答案为:(﹣3,﹣4).
【点睛】
本题考查了坐标与图形性质,主要利用了矩形的对边平行且相等的性质,作出图形更形象直观.
3、 5 2
【解析】
【分析】
根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.
【详解】
解:点到轴的距离为,到轴的距离为2.
故答案为:5;2
【点睛】
本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.
4、 (9,6)
【解析】
【分析】
根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.
【详解】
解:根据题意,如图:
∴有序数对的数是;
由图可知,中含有4个数,中含有9个数,中含有16个数;
……
∴中含有64个数,且奇数行都是从左边第一个数开始,
∵,
∴是第九行的第6个数;
∴数位置为有序数对是(9,6).
故答案为:;(9,6).
【点睛】
此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.
5、5
【解析】
【分析】
利用两点之间的距离公式即可得.
【详解】
解:,
,
即、两点的距离等于5,
故答案为:5.
【点睛】
本题考查了两点之间的距离公式,熟记两点之间的距离公式是解题关键.
三、解答题
1、 (1)(5,5)
(2)-2
(3)
(4)或或
【解析】
【分析】
(1)根据二次反射点的定义直接得出答案;
(2)根据二次反射点的定义得出,则,由此可得的值;
(3)根据二次反射点的定义得出,则可得出答案;
(4)根据二次反射点的定义得出,,由题意分两种情况列出不等式组,解不等式组可得出答案.
【小题1】
解:点,
点关于轴对称得到点,
点关于直线对称得到点.
故答案为:.
【小题2】
点,
点关于轴对称得到点,
点关于直线对称得到点,
,解得,
故答案为:.
【小题3】
点的坐标是,
点关于轴对称得到点,
点关于直线对称得到点,即,
.
【小题4】
由题意可知,点,关于轴和直线的二次反射点分别为,,
且轴,,
线段与正方形的边没有公共点,有三种情况:
①,解得;
②,解得;
③,解得.
综上,若线段与正方形的边没有公共点,则的取值范围或或.
【点睛】
本题考查了平面直角坐标系中坐标与图形变化,考查了正方形的性质,轴对称性质,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
2、(1)图见解析;(2)图见解析.
【解析】
【分析】
(1)先根据平移分别画出点,再顺次连接即可得;
(2)先根据轴对称的性质画出点,再顺次连接即可得.
【详解】
解:(1)如图,即为所求;
(2)如图,即为所求.
【点睛】
本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.
3、 (1)22.5°;
(2)d=2t;
(3)5
【解析】
【分析】
(1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
(2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
(3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
(1)
解:∵和关于y轴对称,
∴∠ABO=∠CBO,
∴∠ABC=2,
∵,
∴∠A=3,
∵∠A+=90°,
∴=22.5°;
(2)
解:∵和关于y轴对称,
∴∠BAO=∠BCO,
∵,
∴OD=5t,AD=6t,
∵,
∴∠ADP=∠BCO,
∴∠ADP=∠BAO,
∴AP=DP,
过点P作PH⊥AD于H,则AH=DH=3t,
∴OH=AH-AO=2t,
∴d=2t;
(3)
解:∵=22.5°,∠ABC=2=45°,AB=BC,
∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
∵,
∴∠APE=,∠AEP=45°,
∴∠EAP=∠DPQ=,
∵AP=DP,AE=PQ,
∴△EAP≌△QPD,
∴∠PDQ=∠APE=,
∴∠ODQ=90°,
连接DQ,过P作PM⊥y轴于M,
∵∠AEP=45°,
∴∠MPF=∠MFP=45°,
∴MF=MP,
∵,MP=2t,
∴,
∵∠APE=,∠PBF=∠ABO=,
∴∠PBF=∠APE,
∴BF=,
∵,
∴,
得t=1,
∴OA=1,OD=5,
∴点Q的横坐标为5.
【点睛】
此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.
4、 (1)见解析,;
(2)见解析,
(3)绕点O顺时针时针旋转
【解析】
【分析】
(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;
(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;
(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.
(1)
解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:
(2)
解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:
(3)
解:根据题意得:绕点O顺时针时针旋转后可直接得到.
【点睛】
本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.
5、(1),;(2)作图见详解;13;(3)作图见详解;,,.
【解析】
【分析】
(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;
(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;
(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.
【详解】
解:(1)∵点关于x轴的对称点P的坐标为,
∴,;
(2)如图:即为所求,
,
故答案为:13;
(3)如图:A、B、C点关于y轴的对称点为:,,,顺次连接,
∴即为所求
,,.
【点睛】
此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了若点P等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试习题,共25页。试卷主要包含了在平面直角坐标系中,将点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共23页。试卷主要包含了在平面直角坐标系xOy中,点A,下列说法错误的是,点A关于y轴的对称点A1坐标是,如图,树叶盖住的点的坐标可能是等内容,欢迎下载使用。