初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题
展开
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共19页。试卷主要包含了下列各式,下列不等式是一元一次不等式的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,是一元一次不等式的是( )A.5+4>8 B.2x-1C.2x≤5 D.2x+y>72、若,则下列式子中,错误的是( )A. B. C. D.3、下列说法正确的是( )A.x=3是2x+1>5的解 B.x=3是2x+1>5的唯一解C.x=3不是2x+1>5的解 D.x=3是2x+1>5的解集4、若x<y,则下列不等式中不成立的是( )A.x-5<y-5 B.x<y C.x-y<0 D.-5x<-5y5、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有( )个.A.1 B.2 C.3 D.46、下列不等式是一元一次不等式的是( )A. B. C. D.7、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<08、若x+2022>y+2022,则( )A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y9、若不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是( )A.m>- B.m<- C.m<- D.m>-10、下列不是不等式5x-3<6的一个解的是( )A.1 B.2 C.-1 D.-2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x>y,试比较大小:﹣3x+5 ______﹣3y+5.(填“>”、“<”或“=”)2、不等式组:,写出其整数解的和_____.3、像这样,关于同一未知数的两个一元一次不等式合在一起,就组成一个__________.4、临近中秋,某超市发起限时抢购散装月饼活动,规定中秋节前一天(9.30)价格打九折,中秋节当天(10月1日)价格打八折,其余时间不打折,中午王老师在该超市选购甲、乙、丙三种月饼,他发现,2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在10月1日的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在9月30日总价的,且4千克甲9月30日的总价不低于65元,也不超过100元,如果三种月饼每千克的价格均为正整数,则王老师买2千克甲,1千克乙,1千克丙共付款_____元.5、若实数满足,则的取值范围为___________.三、解答题(5小题,每小题10分,共计50分)1、如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们定义这个不等式为绝对值不等式,小明在课外小组活动时探究发现:①|x|>a(a>0)的解集是x>a或x<﹣a;②|x|<a(a>0)的解集是﹣a<x<a.根据小明的发现,解决下列问题:(1)请直接写出下列绝对值不等式的解集;①|x|>3的解集是 ②|x|<的解集是 .(2)求绝对值不等式2|x﹣1|+1>9的解集.2、将二元一次方程组的解中的所有数的全体记为,将不等式(组的解集记为,给出定义:若中的数都在内,则称被包含;若中至少有一个数不在内,则称不能被包含.如,方程组的解为,记,,方程组的解为,记,,不等式的解集为,记.因为0,2都在内,所以被包含;因为4不在内,所以不能被包含.(1)将方程组的解中的所有数的全体记为,将不等式的解集记为,请问能否被包含?说明理由;(2)将关于,的方程组的解中的所有数的全体记为,将不等式组的解集记为,若不能被包含,求实数的取值范围.3、某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?4、阅读下面材料:材料一:数轴上表示数的点与原点的距离叫做数的绝对值,记作,数轴上表示数的点与表示数的点的距离记作,如表示数轴上表示数的点与表示数的点的距离.材料二:绝对值符号中含有未知数的不等式叫做绝对值不等式.求绝对值不等式的解集.小华同学的思路如下:根据绝对值的定义,当时,,把和2在数轴上分别表示为点,,如图所示,观察数轴发现,以点,为分界点把数轴分为三部分:点左边的点表示的数的绝对值大于2;点,之间的点表示的数的绝对值小于2;点右边的点表示的数的绝对值大于2因此,小华得出结论,绝对值不等式的解集为:或.参照小华的思路,解决下列问题:(1)请你直接写出下列绝对值不等式的解集.①的解集是 ;②的解集是 ;(2)求绝对值不等式的整数解;(3)直接写出绝对值不等式的解集是 .5、解不等式组:,并把其解集在数轴上表示出来. -参考答案-一、单选题1、C【解析】【分析】从是否含有不等号,是否含有未知数,未知数的个数是否一个,这个未知数的指数是否为1,四个方面判断即可.【详解】∵5+4>8中,没有未知数,∴不是一元一次不等式,A不符合题意;∵2x-1,没有不等号,∴不是一元一次不等式,B不符合题意;∵2x≤5是一元一次不等式,∴C符合题意;∵2x+y>7中,有两个未知数,∴不是一元一次不等式,D不符合题意;故选C.【点睛】本题考查了一元一次不等式的定义即含有一个未知数且未知数的次数是1的不等式,正确理解定义是解题的关键.2、D【解析】【分析】利用不等式的基本性质逐一判断即可.【详解】解:A. 若,则正确,故A不符合题意;B. 若,则正确,故B不符合题意;C. 若,则,正确,故C不符合题意;D. 若d,则,所以D错误,故D符合题意,故选:D.【点睛】本题考查不等式的性质,掌握相关知识是解题关键.3、A【解析】略4、D【解析】【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x<y,∴x-5<y-5,故不符合题意; B. ∵x<y,∴,故不符合题意; C. ∵x<y,∴x-y<0,故不符合题意; D. ∵x<y,∴,故符合题意;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.5、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0; ③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.6、B【解析】【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B、是一元一次不等式,故此选项符合题意;C、是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B.【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.7、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.8、C【解析】【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.9、C【解析】【分析】求出不等式-1≤2-x的解,求出不等式3(x−1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【详解】解不等式-1≤2-x,得:x≤,解不等式3(x-1)+5>5x+2(m+x),得:x<,∵不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴>,解得:m<-.故选:C【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.10、B【解析】略二、填空题1、<【解析】【分析】利用不等式的性质进行判断.【详解】解:∵x>y,∴﹣3x<﹣3y,∴﹣3x+5<﹣3y+5.故答案为:<.【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2、0【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】解:,解不等式①,得;解不等式②,得.∴不等式组的解集为,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.3、一元一次不等式组【解析】略4、80【解析】【分析】本题首先假设三种月饼的价格,继而根据题意列三元一次方程组并求解,进一步根据甲月饼价格限制确定其价格,最后按照题目要求列式求解.【详解】假设每千克甲月饼元,每千克乙月饼元,每千克丙月饼元,故根据题意得:,求解上述方程组得:,由题已知:,且三种月饼每千克价格均为正整数,故解得:,∵,且每种月饼价格为正整数,∴,即,,故每千克甲月饼元,每千克乙月饼元,每千克丙月饼元,综上:2千克甲,1千克乙,1千克丙共付款:元.【点睛】本题考查三元一次方程组的实际应用,解题关键在于通过复杂的文字描述中抽象出数学等式,其次求解三元一次方程组时需根据具体情况选择合适的消元法.5、【解析】【分析】先根据已知等式可得,从而可得,再根据绝对值的非负性、偶次方的非负性求出的取值范围,由此即可得出答案.【详解】解:由得:,则,,,解得,又,,,即的取值范围为,故答案为:.【点睛】本题考查了绝对值的非负性、偶次方的非负性、一元一次不等式组的应用,熟练掌握绝对值和偶次方的非负性是解题关键.三、解答题1、 (1)①x>3或x<−3;②−<x<(2)x>5或x<−3.【解析】【分析】(1)根据题意即可得;(2)将2|x−1|的数字因数2化为1后,根据以上结论即可得.(1)解:①由探究发现,|x|>3的解集是x>3或x<−3;故答案为:x>3或x<−3;②由探究发现,|x|<的解集是−<x<.故答案为:−<x<.(2)解:2|x−1|+1>9,2|x−1|>9−1,2|x−1|>8,|x−1|>4,∴|x−1>4的解集可表示为x−1>4或x−1<−4,∴2|x−1|+1>9的解集为:x>5或x<−3.【点睛】本题主要考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.2、 (1)能被包含.理由见解析(2)实数的取值范围是或【解析】【分析】(1)解方程组求得方程组的解为,不等式x+1≥0的解集为x≥﹣1,2和﹣1都在D内,即可证得C能被D包含;(2)解关于x,y的方程组得到它的解为,得到E:{a+1,a﹣l},解不等式组得它的解集为1≤x<4,根据题意得出a﹣1<1或a+1≥4,解得a<2或a≥3.(1)能被包含.理由如下:解方程组得到它的解为,,,不等式的解集为,,和都在内,能被包含;(2)解关于,的方程组得到它的解为,,,解不等式组得它的解集为,,不能被包含,且,或,或,所以实数的取值范围是或.【点睛】本题考查了新定义,解二元一次方程组和一元一次不等式(组),理解被包含的定义是解题关键,属于中档题.3、 (1)A型公交车每辆45万元,B型公交车每辆60万元;(2)80【解析】【分析】(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意:购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.列出二元一次方程组,解方程组即可;(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,由题意:购买A型公交车的总费用不高于B型公交车的总费用,列出一元一次不等式,解不等式即可.(1)解:设A型公交车每辆x万元,B型公交车每辆y万元,由题意得:,解得:,答:A型公交车每辆45万元,B型公交车每辆60万元;(2)解:设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,由题意得:45m≤60(140﹣m),解得:m≤80,答:该公司最多购买80辆A型公交车.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.4、 (1)①或;②(2)整数解为,0,1,2,3(3)或【解析】【分析】(1)①利用绝对值的意义解答即可得到答案;②利用绝对值的意义解答即可得到答案;(2)根据不等式的性质化简得到,由此得到,求出解集即可得到整数解;(3)分三种情况:①当时,②当时,③当时,分别解不等式即可.(1)解:根据阅读材料可知:①的解集是或;②的解集是.故答案为:或;.(2)解:,,,,,整数解为,0,1,2,3;(3)解:①当时,不等式为,移项、合并得,系数化为1,得;②当时,不等式为,移项、合并得,不成立;③当时,不等式为,移项、合并得,系数化为1,得.故不等式的解集是或,故答案为或.【点睛】此题考查了解绝对值不等式,理解绝对值的意义,正确解一元一次不等式,解题的关键是理解阅读材料掌握解题的思路及方法.5、﹣1.5<x≤1,图见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可.【详解】解: 解不等式3x﹣4<5x﹣1,得:x>﹣1.5,解不等式,得:x≤1,则不等式组的解集为﹣1.5<x≤1,将其解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法.
相关试卷
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试课后作业题,共18页。试卷主要包含了不等式4x-8≤0的解集是,下列说法正确的是,已知x=1是不等式等内容,欢迎下载使用。
这是一份2021学年第十章 一元一次不等式和一元一次不等式组综合与测试综合训练题,共19页。试卷主要包含了下列命题中,假命题是,,那么,若,则不等式组的解集是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共18页。试卷主要包含了若,那么下列各式中正确的是,如图,数轴上表示的解集是,下列各数中,是不等式的解的是等内容,欢迎下载使用。