初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题
展开八年级数学下册第十九章平面直角坐标系综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点在轴上,则点的坐标为( )
A. B. C. D.
2、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
3、点关于轴对称点的坐标为( )
A. B. C. D.
4、已知点P(2﹣m,m﹣5)在第三象限,则整数m的值是( )
A.4 B.3,4 C.4,5 D.2,3,4
5、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )
A. B. C. D.
6、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )
A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)
7、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A. B. C. D.
8、平面直角坐标系中,点到y轴的距离是( )
A.1 B.2 C.3 D.4
9、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
A.轴 B.轴
C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)
10、若点在第三象限内,则m的值可以是( )
A.2 B.0 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线,在某平面直角坐标系中,轴l1,轴l2,点的坐标为,点的坐标为,那么点在第__象限.
2、点关于y轴的对称点的坐标为________.
3、如图,点A在第二象限内,AC⊥OB于点C,B(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.
4、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.
5、在平面直角坐标系中,等腰直角和等腰直角的位置如图所示,顶点,在轴上,,.若点的坐标为,则线段的长为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?
2、如图①,在平面直角坐标系xoy中,直线AB与x轴交于点A(,0),与y轴交于点B(0,4).
(1)求△ABO的面积;
(2)如图D为OA延长线上一动点,以点D为直角顶点,以BD为直角边作等腰直角△BDE,连接EA并延长EA与y轴交于点F,求OF的长;
(3)①如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO中点,若△MNO是等腰三角形,则这样的点M有多少个?直接写出答案.
②如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,请探究OM+MN有最小值吗,如果有,请求出最小值?
3、作图题:如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.
(1)画出关于x轴对称的图形并写出顶点,的坐标;
(2)已知P为y轴上一点,若与的面积相等,请直接与出点P的坐标.
4、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)
(1)画出关于原点对称的图形,并写出点的坐标;
(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
5、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.
(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;
(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据y轴上的点的坐标特点可得a+2=0,再解即可.
【详解】
解:由题意得:a+2=0,
解得:a=-2,
则点P的坐标是(0,-2),
故选:B.
【点睛】
此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.
2、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
3、D
【解析】
【分析】
根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解
【详解】
点关于轴对称点的坐标为
故选D
【点睛】
本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.
4、B
【解析】
【分析】
根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.
【详解】
解:∵P(2﹣m,m﹣5)在第三象限
∴ ,解答2<m<5
∵m是整数
∴m的值为3,4.
故选B.
【点睛】
本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.
5、B
【解析】
【分析】
利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.
【详解】
解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).
故选:B.
【点睛】
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.
6、D
【解析】
【分析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.
【详解】
∵将点A(﹣3,﹣2)向右平移5个单位长度,
∴平移后的点的横坐标为-3+5=2,
∴平移后的点的坐标为(2,-2),
故选:D.
【点睛】
此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.
7、B
【解析】
【分析】
根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
解:点P(2,-1)关于x轴的对称点的坐标为(2,1),
故选:B.
【点睛】
此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.
8、A
【解析】
【分析】
根据点到轴的距离是横坐标的绝对值,可得答案.
【详解】
解:∵,
∴点到轴的距离是
故选:A
【点睛】
本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.
9、C
【解析】
【分析】
利用成轴对称的两个点的坐标的特征,即可解题.
【详解】
根据A点和B点的纵坐标相等,即可知它们的对称轴为.
故选:C.
【点睛】
本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.
10、C
【解析】
【分析】
根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.
【详解】
解:∵点在第三象限内,
∴
m的值可以是
故选C
【点睛】
本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
二、填空题
1、一
【解析】
【分析】
根据题意作出平面直角坐标系,根据图象可以直接得到答案.
【详解】
如图,
点的坐标为,点的坐标为,
点位于第二象限,点位于第四象限,
点位于第一象限.
故答案是:一.
【点睛】
本题考查了坐标与图形性质,解题时,利用了“数形结合”的数学思想,比较直观.
2、
【解析】
【分析】
根据关于y轴对称的两个点,纵坐标相等,横坐标互为相反数求解即可
【详解】
解:点关于y轴的对称点的坐标为
故答案为:
【点睛】
本题考查了关于坐标轴对称的点的特征,掌握关于y轴对称的两个点,纵坐标相等,横坐标互为相反数是解题的关键.
3、
【解析】
【分析】
利用直角三角形的性质和勾股定理求出OC和AC的长,再运用三角形面积公式求出即可.
【详解】
解:∵AC⊥OB,
∴
∵∠AOB=60°,
∴
∵OA=4,
∴
在Rt△ACO中,
∴
故答案为:
【点睛】
本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OC和AC的长是解答本题的关键.
4、
【解析】
【分析】
点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.
【详解】
解: 线段CD是由线段AB平移得到的,点的对应点为,
而
,
故答案为:
【点睛】
本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.
5、
【解析】
【分析】
如图,过点作一条垂直于轴的直线,过点作交点为,过点作交点为;有题意可知,,由D点坐标可知的长度,,进而可得结果.
【详解】
解:如图, 过点作一条垂直于轴的直线,过点作交点为,过点作交点为;
∴,,
∵,,
∴
在和中,
∴
∴
由D点坐标可知,
∴
故答案为:.
【点睛】
本题考查了全等三角形的判定与性质,坐标系中点的坐标等知识.解题的关键是找出所求线段的等价线段的值.
三、解答题
1、B(-2,3),C(4,-3),D(-1,-4)
【解析】
略
2、 (1)8
(2)4
(3)①4个;②有,2
【解析】
【分析】
(1)先求出OA,OB,然后利用三角形面积公式计算即可
(2)过点E作的延长线于点G,根据.利用同角的余角性质得出.根据△BDE是等腰直角三角形得出,可证,可得,.证出,得出即可;
(3)①以点O为圆心ON长为半径画圆交AF于M1,M4,ON=OM1,△ONM1是等腰三角形,ON=OM4,△ONM4是等腰三角形,ON的垂直平分线与AF的交点M2,M2N=OM2,以点N为圆心NO为半径画圆交AF于M3,则NM3=ON,△ONM3是等腰三角形即可;
②过点O作AF的垂线交AF于点G,交AE于点.过点作x轴的垂线,交AF于点M,交x轴于点N.此时点M,N即为所求.在AF上任取一点(异于点M),根据AF平分,,得出,,可证AG垂直平分,得出,则有,由垂线段最短有,此时值最小.在中,又,求出即可.
(1)
解:∵,,
∴,
∴;
(2)
解:过点E作的延长线于点G,
∴.
∵,,
∴.
∵△BDE是等腰直角三角形,
∴,
在和中,
,
∴,
∴,.
∴,即,
∴,
∴.
∵,
∴,
∴.
(3)
①以点O为圆心ON长为半径画圆交AF于M1,M4,ON=OM1,△ONM1是等腰三角形,ON=OM4,△ONM4是等腰三角形,ON的垂直平分线与AF的交点M2,M2N=OM2,以点N为圆心NO为半径画圆交AF于M3,则NM3=ON,△ONM3是等腰三角形,
∴这样的点M有4个.
②过点O作AF的垂线交AF于点G,交AE于点.
过点作x轴的垂线,交AF于点M,交x轴于点N.
此时点M,N即为所求.
若在AF上任取一点(异于点M),
∵AF平分,,∴,,
∴,
∴,
∴AG垂直平分,
∴,
点到x轴的最短距离为过点作x轴的垂线段,垂足为,
有,
由垂线段最短有,
∴此时值最小.
在中,又,
∴,
∴有最小值为2.
【点睛】
本题考查两点间距离,三角形面积,垂线性质,同角余角性质,等腰直角三角形性质与判定,三角形全等判定与性质,等腰三角形作图,线段垂直平分线,角平分线,最短路径,30°直角三角形性质,掌握以上知识是解题关键.
3、 (1)作图见解析,A1(0,-1),C1(4,-4)
(2)(0,6)或(0,-4)
【解析】
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1即可.
(2)设P(0,m),构建方程求解即可.
(1)
解:作出△ABC关于x轴对称的△A1B1C1如图所示.
△A1B1C1顶点坐标为:A1(0,-1),C1(4,-4).
(2)
设P(0,m),
由题意,,
解得m=6或-4,
∴点P的坐标为(0,6)或(0,-4).
【点睛】
本题考查作图-轴对称变换三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、 (1)见解析,;
(2)见解析,
(3)绕点O顺时针时针旋转
【解析】
【分析】
(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;
(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;
(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.
(1)
解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:
(2)
解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:
(3)
解:根据题意得:绕点O顺时针时针旋转后可直接得到.
【点睛】
本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.
5、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)
【解析】
【分析】
(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;
(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)如图所示,△PQM即为所求;
∵P是D(-3,0)横坐标减2,纵坐标加3得到的,
∴点P的坐标为(-5,3).
【点睛】
本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共21页。试卷主要包含了下列命题为真命题的是,点P,若点P,点关于轴对称的点是,已知点P等内容,欢迎下载使用。
冀教版八年级下册第十九章 平面直角坐标系综合与测试精练: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试精练,共25页。试卷主要包含了点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
初中冀教版第十九章 平面直角坐标系综合与测试复习练习题: 这是一份初中冀教版第十九章 平面直角坐标系综合与测试复习练习题,共31页。试卷主要包含了如果点P,已知点A,下列命题中,是真命题的有,点关于轴对称的点是等内容,欢迎下载使用。