搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系综合测试试题(含详解)

    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系综合测试试题(含详解)第1页
    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系综合测试试题(含详解)第2页
    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系综合测试试题(含详解)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第十九章 平面直角坐标系综合与测试课时练习

    展开

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时练习,共27页。试卷主要包含了点关于轴对称点的坐标为,在平面直角坐标系xOy中,点M,在下列说法中,能确定位置的是,已知点P的坐标为等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(  )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)2、点关于轴对称的点是(  )A. B. C. D.3、在平面直角坐标系xOy中,点A(0,2),Ba,0),Cmn)(n>0).若△ABC是等腰直角三角形,且ABBC,当0<a<1时,点C的横坐标m的取值范围是(   A.0<m<2 B.2<m<3 C.m<3 D.m>34、点与点Q关于y轴对称,则点Q的坐标为(       A. B. C. D.5、点关于轴对称点的坐标为(       A. B. C. D.6、若点在第三象限内,则m的值可以是(       A.2 B.0 C. D.7、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为(       A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)8、在下列说法中,能确定位置的是(     A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号9、已知点P的坐标为(﹣2,3),则点Py轴的距离为(  )A.2 B.3 C.5 D.10、点P(-3,4)到坐标原点的距离是(       A.3 B.4 C.-4 D.5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、点A(2,1)关于x轴对称的点B的坐标是______.2、已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,(1)当△ABP成为等边三角形时,点 P的坐标为________.(2)若∠APB<45°,则 t的取值范围为_______.3、点 A(4,-3)关于 y 轴的对称点的坐标是______,关于原点对称的点的坐标是_________,到原点的距离是____.4、如果点关于轴的对点的坐标为,则______.5、如图,在平面直角在坐标系中,四边形OACB的两边OAOB分别在x轴、y轴的正半轴上,其中,且CO平分,若,则点C的坐标为______.三、解答题(5小题,每小题10分,共计50分)1、定义:若实数xy,满足k为常数,),则在平面直角坐标系中,称点为点的“k值关联点”.例如,点是点的“4值关联点”.(1)判断在两点中,哪个点是的“k值关联点”;(2)设两个不相等的非零实数mn满足点是点的“k值关联点”,则_______________2、在平面直角坐标系中,的三个顶点坐标分别是(1)画出(2)将平移,使点A平移到原点O,画出平移后的图形并写出点B和点C的对应点坐标.3、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)4、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标.5、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点分别在轴、轴上,设点轴上异于点的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设                          (1)直接写出的范围;(2)若点轴上的动点,结合图形,求(用含的式子表示);(3)当点轴上的动点时,求的周长的最小值,并说明此时点的位置. -参考答案-一、单选题1、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.2、C【解析】【分析】由题意可分析可知,关于轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据轴对称的性质,得点关于轴对称的点是故选:C.【点睛】本题考查了对称点的坐标规律,解题的关键是掌握相应的规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、B【解析】【分析】过点CCDx轴于D,由“AAS”可证AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点CCDx轴于D∵点A(0,2),AO=2,∵△ABC是等腰直角三角形,且AB=BC∴∠ABC=90°=∠AOB=∠BDC∴∠ABO+∠CBD=90°=∠ABO+∠BAO∴∠BAO=∠CBDAOBBDC中,∴△AOB≌△BDCAAS),AO=BD=2,BO=CD=n=a∴0<a<1,OD=OB+BD=2+a=m ∴2<m<3,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.4、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.5、D【解析】【分析】根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解【详解】关于轴对称点的坐标为故选D【点睛】本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.6、C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.7、A【解析】【分析】根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.【详解】解:点M(1,2)关于x轴的对称点的坐标为(1,-2);故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特征,点Pxy)关于x轴的对称点P′的坐标是(x,-y).8、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.9、A【解析】【分析】若点轴的距离为 轴的距离为 从而可得答案.【详解】解:点P的坐标为(﹣2,3),则点Py轴的距离为 故选A【点睛】本题考查的是点到坐标轴的距离,掌握“点的坐标与点到轴的距离的联系”是解本题的关键.10、D【解析】【分析】利用两点之间的距离公式即可得.【详解】解:点到坐标原点的距离是故选:D.【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.二、填空题1、【解析】【分析】平面直角坐标系中任意一点Pxy),关于x轴的对称点的坐标是(x,-y),据此解答即可.【详解】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,-1),故答案为:(2,-1)【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.2、     (0,)或(0,-);     t>2+t<-2-【解析】【分析】(1)根据△ABP成为等边三角形,点A(2,0),B(-2,0),得出AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解方程即可;(2)分两种情况,点Px轴上方,∠APB=45°,根据点Py轴上,OA=OB=2,可得OPAB的垂直平分线,得出AP=BP,根据等腰三角形三线合一性质得出∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,可证AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,根据三角形外角∠AOCPCA的外角性质得出∠CPA=∠CAP,求出点P(0,2+),根据远离AB角度变小知当∠APB<45°时,t>2+,当点Px轴下方,利用轴对称性质,求出点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-即可.【详解】解:(1)∵ABP成为等边三角形,点A(2,0),B(-2,0),AP=AB=2-(-2)=2+2=4,在RtOAP中,点P(0,t),根据勾股定理,即解得∴点P(0,)或(0,-),故答案为(0,)或(0,-);(2)分两种情况,点Px轴上方,∠APB=45°,∵点Py轴上,OA=OB=2,OPAB的垂直平分线,AP=BP∴∠APO=∠BPO=22.5°,y轴的正半轴上截取OC=OA=2,∠AOC=90°,∴△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=∵∠AOCPCA的外角,∴∠ACO=∠CPA+∠CAP=45°,∵∠APO=22.5°,∴∠CAP=45°-∠CPA=45°-∠APO=45°-22.5°=22.5°,∴∠CPA=∠CAPCP=AC=OP=OC+CP=2+∴点P(0,2+当∠APB<45°时,t>2+当点Px轴下方,利用轴对称性质,P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-综合得∠APB<45°,则 t的取值范围为t>2+t<-2-故答案为t>2+t<-2-【点睛】本题考查等边三角形的性质,勾股定理,图形与坐标,等腰直角三角形,线段垂直平分线,等腰三角形三线合一性质,轴对称性质,掌握以上知识是解题关键.3、     (-4,-3)     (-4,3)     5【解析】【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;由勾股定理求得两点间的距离.【详解】解:点A(4,-3)关于y轴的对称点的坐标是(-4,-3),关于原点对称的点的坐标是(-4,3),到原点的距离是:故答案是:(-4,-3);(-4,3);5.【点睛】此题主要考查了关于原点对称点的性质,关于坐标轴对称的点的性质,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、1【解析】【分析】根据轴对称的性质得到a=3,b=2,代入计算即可.【详解】解:由题意得a=3,b=2,3-2=1,故答案为:1.【点睛】此题考查了轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.5、【解析】【分析】AB的中点E,连接OECE并延长交x轴于点F,根据直角三角形斜边 上的中线等于斜边的一半证明CE=OE=AE,再进一步证明;由勾股定理求出AB=AO=BO=5;过点OOGOCCA的延长线于点G,证明△COG访问团等腰直角三角形,可可求出OC=7;过点CCHx轴,垂足为H,设Cmn),则OH=mCH=nAH=5-m,根据勾股定理可得方程组 ,求出方程组的解,取正值即可.【详解】解:取AB的中点E,连接OECE并延长交x轴于点F,如图,OC平分∠ACB 均为直角三角形, 是等腰直角三角形, 由勾股定理得, 过点OOEOCCA的延长线于点G∵∠OCA=45°,∴∠G=45°,∴△COG为等腰直角三角形,OC=OG∵∠BOC+∠COA=∠COA+∠AOG=90°,∴∠BOC=∠AOG∵∠OCB=∠OEA=45°,∴△COB≌△GOAASA),BC=AG=CG=AC+AG=∵△OCE为等腰直角三角形,OC=7过点CCHx轴于点H,设Cmn),OH=mCH=nAH=5-mRtCHORtCHA中,由勾股定理得,解得,(负值舍去)C故答案为:(【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.三、解答题1、 (1)(2)3【解析】【分析】(1)根据“k值关联点”的含义,只要找到k的值,且满足即可作出判断,这只要根据,若两式求得的k的值相等则是,否则不是;(2)根据“k值关联点”的含义得到两个等式,消去k即可求得mn的值.(1)对于点A∴点不是的“k值关联点”;对于点B:∴点的“值关联点”;(2)∵点是点的“k值关联点”得:故答案为:3【点睛】本题是材料题,考查了点的坐标,消元思想,关键是读懂题目,理解题中的“k值关联点”的含义.2、 (1)画图见解析;(2)画图见解析,【解析】【分析】(1)根据即可画出(2)先画出平移后的,再写出点B1和点C1的坐标即可.(1)解:如图所示:即为所求.(2)解:平移后的如图所示:此时【点睛】本题考查了作图-平移变换,掌握平移的性质是解决本题的关键.3、 (1)见解析,(2)见解析,(3)绕点O顺时针时针旋转【解析】【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.4、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).【解析】【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1 B1C1C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2 B2C2C2A2即可.【详解】解:(1)根据点在平面直角坐标系中的位置,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1 B1C1C1A1为所求,点B1(-5,-1);(2)∵关于轴对称的∴点的坐标特征是横坐标互为相反数,纵坐标不变,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2 B2C2C2A2为所求,点B2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.5、 (1)(2)(3)只有当点轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出的度数即可;(3)当点在点之间时,过点轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,BNOC的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,所以,的范围是(2)解:当点在点之间时,此时BCOA∵∠MBN=45°,互余,当点在点的左边时,此时同理可得,当点在点的右边且在(8,0)左侧时,据题意,同理可得,(3)解:当点在点之间时,如图①,过点轴于点,又,而的周长为当点在点的左边时,如图②,必有,故当点在点的右边时,如图③,则,而综上所述,只有当点轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明. 

    相关试卷

    八年级下册第十九章 平面直角坐标系综合与测试课后作业题:

    这是一份八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共24页。试卷主要包含了下列命题为真命题的是,点关于轴的对称点是,下列各点中,在第二象限的点是,在平面直角坐标系中,A等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共20页。试卷主要包含了已知点A,若平面直角坐标系中的两点A等内容,欢迎下载使用。

    2021学年第十九章 平面直角坐标系综合与测试随堂练习题:

    这是一份2021学年第十九章 平面直角坐标系综合与测试随堂练习题,共29页。试卷主要包含了点P,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map