2021学年第十九章 平面直角坐标系综合与测试随堂练习题
展开
这是一份2021学年第十九章 平面直角坐标系综合与测试随堂练习题,共29页。试卷主要包含了点P,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
A.(a,b)B.(-a,-b)C.(a+2,b+4)D.(a+4,b+2)
3、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
4、如图,网格中的每个小正方形边长均为1,的顶点均落在格点上,若点A的坐标为,则到三个顶点距离相等的点的坐标为( )
A.B.C.D.
5、点P(-3,4)到坐标原点的距离是( )
A.3B.4C.-4D.5
6、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )
A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)
7、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )
A.(2020,0)B.(2021,1)C.(2021,0)D.(2022,﹣1)
8、在平面直角坐标系中,已知a<0, b>0, 则点P(a,b)一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
9、已知点和点关于轴对称,则的值为( )
A.1B.C.D.
10、在平面直角坐标系中,点P(-3,-3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.
2、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.
3、要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.
4、如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点P在x轴下方,且以O,A,P为顶点的三角形与OAB全等,则满足条件的P点的坐标是________.
5、一般地,在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点_________;将点(x,y)向左平移a个单位长度,可以得到对应点_________;将点(x,y)向上平移b个单位长度,可以得到对应点_________;将点(x,y)向下平移b个单位长度,可以得到对应点_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,点O为坐标原点,B(0,n),点A在x轴的负半轴上,点C(m,0),且+|n﹣2|=0.
(1)求∠BCO的度数;
(2)点P从A点出发沿射线AO以每秒2个单位长度的速度运动,同时,点Q从B点出发沿射线BO以每秒1个单位长度的速度运动,设△APQ的面积为S,点P运动的时间为t,求用t表示S的代数式(直接写出t的取值范围);
(3)在(2)的条件下,当点P在x轴的正半轴上,连接AQ、BP、PQ,∠BQP=2∠ABC=2∠OAQ,且四边形ABPQ的面积为25,求PQ的长.
2、如图,平面直角坐标系中,已知点,,,是的边上任意一点,经过平移后得到△,点的对应点为.
(1)直接写出点,,的坐标.
(2)在图中画出△.
(3)连接,,,求的面积.
(4)连接,若点在轴上,且三角形的面积为8,请直接写出点的坐标.
3、这是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置:
4、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.
例如,如图已知点,,点关于点的对称平移点为.
(1)已知点,,
①点关于点的对称平移点为________(直接写出答案).
②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)
(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.
5、问题背景:(1)如图①,已知中,,,直线m经过点A,直线m,直线m,垂足分别为点D,E,易证:______+______.
(2)拓展延伸:如图②,将(1)中的条件改为:在中,,D,A,E三点都在直线m上,并且有,请求出DE,BD,CE三条线段的数量关系,并证明.
(3)实际应用:如图③,在中,,,点C的坐标为,点A的坐标为,请直接写出B点的坐标.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.
【详解】
解:∵点关于轴对称的点是,
∵,
∴点关于轴对称的点在第三象限.
故选:C.
【点睛】
本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.
2、D
【解析】
【分析】
根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
【详解】
解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
故选:D.
【点睛】
此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
3、C
【解析】
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
C、如下图所示为作图过程,作图错误;
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
4、C
【解析】
【分析】
到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,画出交点,进而得出其坐标即可.
【详解】
解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,
∴到△ABC三个顶点距离相等的点的坐标为(0,0),
故选:C.
【点睛】
本题主要考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.
5、D
【解析】
【分析】
利用两点之间的距离公式即可得.
【详解】
解:点到坐标原点的距离是,
故选:D.
【点睛】
本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.
6、D
【解析】
【分析】
点P在y轴上则该点横坐标为0,据此解答即可.
【详解】
∵y轴负半轴上的点P到x轴的距离为2,
∴点P的坐标为(0,﹣2).
故选:D.
【点睛】
本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.
7、C
【解析】
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P每秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
∵2021÷4=505余1,
∴P的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
8、B
【解析】
【分析】
由题意知P点在第二象限,进而可得结果.
【详解】
解:∵a<0, b>0
∴P点在第二象限
故选B.
【点睛】
本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.
9、A
【解析】
【分析】
直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.
【详解】
解答:解:点和点关于轴对称,
,,
则
.
故选:A.
【点睛】
此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.
10、C
【解析】
【分析】
根据平面直角坐标系中各象限内点的坐标特征解答即可.
【详解】
解:因为A(−3,-3)中的横坐标为负,纵坐标为负,
故点P在第三象限.
故选C.
【点睛】
本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
二、填空题
1、或
【解析】
【分析】
根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.
【详解】
解:点C关于坐标轴翻折,分两种情况讨论:
点C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:;
点C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:;
故答案为:或.
【点睛】
题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.
2、4或
【解析】
【分析】
点B在x轴上,所以 ,分别讨论, 和两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.
【详解】
解:∵B在x轴上,
∴设 ,
∵ ,
∴ ,
①当时,B点横坐标与A点横坐标相同,
∴ ,
∴ ,
∴ ,
②当时, ,
∵点A坐标为,,
∴ ,
∴ ,
解得: ,
∴ ,
∴ ,
故答案为:4或.
【点睛】
本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.
3、10
【解析】
【分析】
作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.
【详解】
解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,
∵AP=A'P,
∴AP+BP=A'P+BP=A'B,此时P点到A、B的距离最小,
∵A(0,3),
∴A'(0,﹣3),
∵B(6,5),
5-(-3)=8,6-0=6
∴A'B==10,
∴P点到A、B的距离最小值为10,
故答案为:10.
【点睛】
本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离是解题的关键.
4、或##或
【解析】
【分析】
根据题意,这两个三角形中为公共边,故分,两种情况讨论,根据题意作出图形,进而求得点的坐标
【详解】
解:如图,
①作关于的对称的点,连接
B(4,2),则
②作关于()对称的点,连接,
则
又
则点
故答案为:或
【点睛】
本题考查了坐标与图形,全等三角形的性质与判定,轴对称的性质,掌握轴对称的性质是解题的关键.
5、 (x+a,y) (x-a,y) (x,y+b) (x,y-b)
【解析】
略
三、解答题
1、 (1)
(2)
(3)5
【解析】
【分析】
(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;
(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;
(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得.
(1)
是等腰直角三角形,
(2)
①当点在轴正半轴时,如图,
,,
,
②当点在原点时,都在轴上,不能构成三角形,则时,不存在
③当点在轴负半轴时,如图,
,,
,
综上所述:
(3)
如图,过点作,连接
,
设,,则,
是等腰直角三角形
在和中
,
是等腰直角三角形
中,
,
又
【点睛】
本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.
2、 (1),,
(2)见解析
(3)的面积=6
(4)或
【解析】
【分析】
(1)利用P点和P1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A1,B1,C1的坐标;
(2)利用点A1,B1,C1的坐标描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA1的面积;
(4)设Q(0,t),利用三角形面积公式得到×8×|t−1|=8,然后解方程求出t得到Q点的坐标.
(1)
解:,,;
(2)
解:如图,△为所作;
(3)
解:的面积
,
,
;
(4)
解:设,
,,
,
三角形的面积为8,
,解得或,
点的坐标为或.
【点睛】
本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
3、见解析
【解析】
【详解】
4、 (1)①(6,4);②(3,-2)
(2)的值为±2
【解析】
【分析】
(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;
(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.
(1)
解:①如图1中,点关于点的对称平移点为F(6,4).
故答案为:(6,4).
②若点为点关于点的对称平移点,则点的坐标为(3,-2).
故答案为:(3,-2);
(2)
解:如图2中,当m>0时,四边形OKDE是梯形,
∵OE=1.5m,DK=0.5m,D(m,m),
∴SΔDEK=12×0.5m×m=1,
∴m=2或-2(舍弃),
当时,同法可得m=-2,
综上所述,的值为±2.
【点睛】
本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.
5、(1)BD;CE;证明见详解;(2)DE=BD+CE;证明见详解;(3)点B的坐标为B(1,4).
【解析】
【分析】
(1)根据全等三角形的判定和性质得到AE=BD,AD=CE,结合图形解答即可;
(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答即可.
【详解】
(1)证明:∵BD⊥m,CE⊥m,
∴∠ADB=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中
∠ABD=∠CAE∠ADB=∠CEAAB=CA,
∴△ADB≌△CEA,
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE,
即:DE=BD+CE,
故答案为:BD;CE;
(2)解:数量关系:DE=BD+CE ,
证明:在△ABD中,∠ABD=180°-∠ADB-∠BAD,
∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
∠ABD=∠CAE∠BDA=∠AECAB=CA
∴△ABD≌△CAE,
∴AE=BD,AD=CE,
∴DE=AD+AE=BD+CE;
(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,
由(1)可知,△AEC≌△CFB,
∴CF=AE=3,BF=CE=OE-OC=4,
∴OF=CF-OC=1,
∴点B的坐标为B(1,4).
【点睛】
本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.
相关试卷
这是一份八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共24页。试卷主要包含了下列命题为真命题的是,点关于轴的对称点是,下列各点中,在第二象限的点是,在平面直角坐标系中,A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共20页。试卷主要包含了已知点A,若平面直角坐标系中的两点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共20页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,在平面直角坐标系xOy中,点M等内容,欢迎下载使用。