初中数学第十九章 平面直角坐标系综合与测试课后复习题
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试课后复习题,共22页。试卷主要包含了已知点P的坐标为,点在第四象限,则点在第几象限,在平面直角坐标系中,已知点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°2、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限4、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )A. B. C. D.5、已知点P的坐标为(﹣2,3),则点P到y轴的距离为( )A.2 B.3 C.5 D.6、点向上平移2个单位后与点关于y轴对称,则( ).A.1 B. C. D.7、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点10、如果点P(﹣5,b)在第二象限,那么b的取值范围是( )A.b≥0 B.b≤0 C.b<0 D.b>0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A(4,﹣3)到x轴的距离是___.2、用坐标表示地理位置的步骤:(1)建立坐标系,选择一个______参照点为原点,确定______和______.参照点不同,地理位置的坐标也不同.(2)根据具体问题确定适当的______,并在坐标轴上标出______.(3)在坐标平面内画出这些点,并写出各点的______和各个地点的名称.3、在平面内画两条互相垂直、原点重合的数轴,组成_______.水平的数轴称为x轴或______,取向______方向为正方向;竖直的数轴称为y轴或______,取向______方向为正方向.两坐标轴的交点为平面直角坐标系的______,一般用______来表示.4、一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移_________个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向上(或向下)平移_________个单位长度.5、在平面直角坐标系中,点在第______象限三、解答题(5小题,每小题10分,共计50分)1、设两个点A、B的坐标分别为,,则线段AB的长度为:.举例如下:A、B两点的坐标是,,则A、B两点之间的距离.请利用上述知识解决下列问题:(1)若,,且,求x的值;(2)已知△ABC,点A为、点B为、点C为,求△ABC的面积;(3)求代数式的最小值.2、如图①,在平面直角坐标系xoy中,直线AB与x轴交于点A(,0),与y轴交于点B(0,4).(1)求△ABO的面积;(2)如图D为OA延长线上一动点,以点D为直角顶点,以BD为直角边作等腰直角△BDE,连接EA并延长EA与y轴交于点F,求OF的长;(3)①如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO中点,若△MNO是等腰三角形,则这样的点M有多少个?直接写出答案.②如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,请探究OM+MN有最小值吗,如果有,请求出最小值?3、如图,在平面直角坐标系中,的三个顶点为,,.(1)画出关于x轴对称的;(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.4、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为,,.(1)若与关于y轴对称,画出;(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.5、如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形AʹBʹCʹ,点A,B,C的对应点分别为Aʹ,Bʹ,Cʹ.(1)写出点Aʹ,Bʹ,Cʹ的坐标;(2)在图中画出平移后的三角形AʹBʹCʹ;(3)求三角形AʹBʹCʹ的面积. -参考答案-一、单选题1、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.2、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.3、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.5、A【解析】【分析】若点 则到轴的距离为 到轴的距离为 从而可得答案.【详解】解:点P的坐标为(﹣2,3),则点P到y轴的距离为 故选A【点睛】本题考查的是点到坐标轴的距离,掌握“点的坐标与点到轴的距离的联系”是解本题的关键.6、D【解析】【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点 ,∵点与点关于y轴对称,∴ , ,∴ ,∴,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.7、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.9、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.10、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,∴b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.二、填空题1、3【解析】【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点A(4,﹣3)到x轴的距离是3.故答案为:3.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与横(纵)坐标的关系是解答的关键.2、 适当的 x轴,y轴 正方向 比例尺 单位长度 坐标【解析】略3、 平面直角坐标系 横轴 右 纵轴 上 原点 O【解析】略4、 a b【解析】略5、三【解析】【分析】根据的横纵坐标都为负,即可判断在第三象限【详解】解:点在第三象限故答案为:三【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).三、解答题1、 (1)或(2)△ABC的面积为5(3)13【解析】【分析】(1)直接利用两点之间的距离公式计算即可;(2)利用两点之间的距离公式可求得AB、BC、AC的线段长度,利用勾股定理的逆定理可判断出△ABC为直角三角形,然后利用直角三角形的面积计算公式计算即可;(3)所求代数式可以看成是点与点的距离和点与点的距离之和,最短为点与点的距离之和,依此求解.(1)解:∵∴又∵,,且,∴,即或.(2)解:,,,∴,∴△ABC为直角三角形,∴.(3)解:∵∴该代数式可看成是点与点的距离和点与点的距离之和,当点在点与点连接的线段上时最短为,故的最小值为13.【点睛】本题考查两点之间的距离,勾股定理和逆定理的应用,最短路线问题.(1)中理解题意,正确计算是解题关键;(2)中能计算三条线段长度,并判断三角形为直角三角形是解题关键;(3)中需注意因为带着平方,所以点和点不是唯一的,但因为点的纵坐标为0,所以必须保证上述两点的纵坐标一正一负,点才有可能在它们连接后的线段上.2、 (1)8(2)4(3)①4个;②有,2【解析】【分析】(1)先求出OA,OB,然后利用三角形面积公式计算即可(2)过点E作的延长线于点G,根据.利用同角的余角性质得出.根据△BDE是等腰直角三角形得出,可证,可得,.证出,得出即可;(3)①以点O为圆心ON长为半径画圆交AF于M1,M4,ON=OM1,△ONM1是等腰三角形,ON=OM4,△ONM4是等腰三角形,ON的垂直平分线与AF的交点M2,M2N=OM2,以点N为圆心NO为半径画圆交AF于M3,则NM3=ON,△ONM3是等腰三角形即可;②过点O作AF的垂线交AF于点G,交AE于点.过点作x轴的垂线,交AF于点M,交x轴于点N.此时点M,N即为所求.在AF上任取一点(异于点M),根据AF平分,,得出,,可证AG垂直平分,得出,则有,由垂线段最短有,此时值最小.在中,又,求出即可.(1)解:∵,,∴,∴;(2)解:过点E作的延长线于点G,∴.∵,,∴.∵△BDE是等腰直角三角形,∴,在和中,,∴,∴,.∴,即,∴,∴.∵,∴,∴.(3)①以点O为圆心ON长为半径画圆交AF于M1,M4,ON=OM1,△ONM1是等腰三角形,ON=OM4,△ONM4是等腰三角形,ON的垂直平分线与AF的交点M2,M2N=OM2,以点N为圆心NO为半径画圆交AF于M3,则NM3=ON,△ONM3是等腰三角形,∴这样的点M有4个.②过点O作AF的垂线交AF于点G,交AE于点.过点作x轴的垂线,交AF于点M,交x轴于点N.此时点M,N即为所求.若在AF上任取一点(异于点M),∵AF平分,,∴,,∴,∴,∴AG垂直平分,∴,点到x轴的最短距离为过点作x轴的垂线段,垂足为,有,由垂线段最短有,∴此时值最小.在中,又,∴,∴有最小值为2.【点睛】本题考查两点间距离,三角形面积,垂线性质,同角余角性质,等腰直角三角形性质与判定,三角形全等判定与性质,等腰三角形作图,线段垂直平分线,角平分线,最短路径,30°直角三角形性质,掌握以上知识是解题关键.3、 (1)见解析(2)见解析【解析】【分析】(1)分别作出,,关于轴对称的三个点,连接即可得到.(2)求出将横坐标与纵坐标同时乘以的对应点,连接即可得到.(1)解:分别作出,,关于轴对称的三个点为,连接得到,如下图:(2)解:将将横坐标与纵坐标同时乘以的对应点分别为:,描点后连线得,如下图:【点睛】本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.4、 (1)见解析(2)【解析】【分析】(1)根据关于y轴对称的点的坐标特征,先得到A、B、C关于y轴对称的对应点、、的坐标,然后在坐标系中描出、、三点,最后顺次连接、、三点即可得到答案;(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.(1)解:如图所示,即为所求;(2)解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,由图可知点P的坐标为(3,3).【点睛】本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.5、 (1)Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)见解析(3)△AʹBʹCʹ的面积为7.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用(1)中所求对应点位置画图形即可;(3)利用△AʹBʹCʹ所在矩形面积减去周围多余三角形的面积进而得出答案.(1)解:根据平移的性质得: Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)解:如图所示:△AʹBʹCʹ即为所求;(3)解:△AʹBʹCʹ的面积为:4×5-×2×4-×1×3-×3×5=7.【点睛】本题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共25页。试卷主要包含了在平面直角坐标系xOy中,点A,已知点A,若点在轴上,则点的坐标为等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共28页。试卷主要包含了12,则第三边长为13;等内容,欢迎下载使用。