开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版八年级数学下册第十九章平面直角坐标系综合测试试卷(精选)

    2022年最新冀教版八年级数学下册第十九章平面直角坐标系综合测试试卷(精选)第1页
    2022年最新冀教版八年级数学下册第十九章平面直角坐标系综合测试试卷(精选)第2页
    2022年最新冀教版八年级数学下册第十九章平面直角坐标系综合测试试卷(精选)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练

    展开

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练,共24页。试卷主要包含了下列命题中,是真命题的有等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(       A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)2、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点,并且知道藏宝地点的坐标是,则藏宝处应为图中的(       A.点 B.点 C.点 D.点4、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是(       A. B. C. D.5、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)6、若点在第一象限,则a的取值范围是(       A. B. C. D.无解7、如果点在第四象限内,则m的取值范围(       A. B. C. D.8、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是(       A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)9、下列命题中,是真命题的有(       ①以1、为边的三角形是直角三角形,则1、是一组勾股数;②若一直角三角形的两边长分别是5、12,则第三边长为13;③二次根式是最简二次根式;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;⑤东经113°,北纬35.3°能确定物体的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤10、已知点P的坐标为(﹣2,3),则点Py轴的距离为(  )A.2 B.3 C.5 D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、点A(2,1)关于x轴对称的点B的坐标是______.2、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数ab组成的数对,叫做有序数对,记作(     ),___ ). 注意:①数ab是有顺序的;②数ab是有特定含义的;③有序数对表示平面内的点,每个点与有序数对________.3、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.4、若点x轴上,写出一组符合题意的mn的值______.5、如果点关于轴的对点的坐标为,则______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中有两点,坐标分别为,已知点的坐标为(1)确定平面直角坐标系,并画出(2)请画出关于轴对称的图形,并直接写出的面积;(3)若轴上存在一点,使的值最小.请画图确定点的位置,并直接写出的最小值.2、在平面直角坐标系中,Aa,0),Bb,0),Cc,0),a≠0且abc满足条件(1)直接写出△ABC的形状          (2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°① 如图1,当点E与点C重合时,求AD的长;② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;3、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A (-1,3), B (-4,3) ,O (0,0).(1)△ABO向右平移5个单位,向上平移1个单位,得到△A1B1C1,画出△A1B1C1并写出点B1的坐标;(2)画出△A1B1C1沿着x轴翻折后得到的△A2B2C2,并写出点A2的坐标.4、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形(4)在x轴上找到一点P,使最小,则的最小值是_________.5、如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出ABC 关于 y 轴对称的A1B1C1(2)写出 A1B1C1 的坐标(直接写出答案),A1     B1     C1       (3)A1B1C1 的面积为      -参考答案-一、单选题1、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.2、D【解析】【分析】x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.3、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.4、A【解析】【分析】根据点的平移规律可得,再根据第三象限内点的坐标符号可得.【详解】解:点先向左平移个单位得点,再将向上平移个单位得点位于第三象限,解得:故选:【点睛】此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.5、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.6、B【解析】【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解:在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.7、A【解析】【分析】根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.【详解】解:∵点在第四象限内,解得,故选:A.【点睛】本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.8、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.9、D【解析】【分析】根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.【详解】解:①以1、为边的三角形是直角三角形,但1、不是勾股数,故该项不是真命题;②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;③二次根式不是最简二次根式,故该项不是真命题;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;故选:D.【点睛】此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.10、A【解析】【分析】若点轴的距离为 轴的距离为 从而可得答案.【详解】解:点P的坐标为(﹣2,3),则点Py轴的距离为 故选A【点睛】本题考查的是点到坐标轴的距离,掌握“点的坐标与点到轴的距离的联系”是解本题的关键.二、填空题1、【解析】【分析】平面直角坐标系中任意一点Pxy),关于x轴的对称点的坐标是(x,-y),据此解答即可.【详解】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,-1),故答案为:(2,-1)【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.2、     位置     有顺序     a     b     一一对应【解析】3、【解析】【分析】根据已知点的坐标表示方法即可求即.【详解】解:∵从前面数第8行第3位的学生位置记作∴坐在第3行第8位的学生位置可表示为(3,8).故答案为(3,8).【点睛】本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.4、(答案不唯一)【解析】【分析】根据轴上点的坐标特点,纵坐标为0,即可求解.【详解】解:根据轴上点的坐标特点,纵坐标为零即可,即x轴上,故答案是:(答案不唯一).【点睛】本题考查了轴上点的坐标特点,解题的关键是掌握在轴上点的坐标的纵坐标为0.5、1【解析】【分析】根据轴对称的性质得到a=3,b=2,代入计算即可.【详解】解:由题意得a=3,b=2,3-2=1,故答案为:1.【点睛】此题考查了轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.三、解答题1、 (1)图见解析;(2)图见解析,的面积为6;(3)点M的位置见解析,的最小值为【解析】【分析】(1)根据AB两点的坐标确定平面直角坐标系,再描出点C的坐标,然后顺次连接ABC三点即可画出△ABC(2)根据坐标与图形变换-轴对称即可画出,根据对称性质求解△ABC的面积即可;(3)连接AB1x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,最小值AB1的长,利用点AB坐标求解AB1即可.(1)解,如图,平面直角坐标系和△ABC即为所求:(2)解:如图,即为所求:由图知:=SABC==6;(3)解:如图,连接AB1x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,即点M即为所求,最小值为AB1的长,A(2,3)、B1(6,-1),AB1==的最小值为【点睛】本题考查平面直角坐标系、作图-轴对称变换、坐标与图形、轴对称-最短路线问题、三角形的面积公式,正确作出图形是解答的关键.2、(1)等腰三角形,证明见解析;(2)①;②【解析】【分析】(1)先证明 再证明 从而可得答案;(2)① 先证明是等边三角形,可得 再证明 再利用含的直角三角形的性质求解 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFDAAS), 可得AC=EF,再求解BD=CF=CD=, 再求解OE=, 从而可得答案.【详解】解:(1) 解得: A,0),Bb,0),C(3,0), 是等腰三角形.(2)①ACB=120°,∠ADE=60°, 是等边三角形, ②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:AC=BC,∠ACB=120°, ∴∠ACO=∠BCO=60°, ∴△CDF是等边三角形, ∴∠CFD=60°,CD=FD∴∠EFD=120°, ∵∠ACO=∠ADE=60°,   ∴∠CAD=∠CED又∵∠ACD=∠EFD=120°, ∴△ACD≌△EFDAAS), AC=EF, 由(1)得:c=3, ∴OC=3, ∵∠AOC=90°,∠ACO=60°, ∴∠OAC=30°, BC=AC=2OC=6,EF=AC=6, CD=2BD, ∴BD=CF=CD=CE=EF+CF=OE=CE-OC=【点睛】本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键.3、 (1)见解析,(2)见解析,【解析】【分析】(1)把△ABO的三个顶点ABO分别向平移5个单位,向上平移1个单位,得到对应点A1B1C1,依次连接这三个点即可得到△A1B1C1,即可写出点B1的坐标;(2)把△A1B1C1的三个顶点A1B1C1沿着x轴翻折后得到A2B2C2依次连接这三点,得到△A2B2C2,由翻折即可写出点A2的坐标.(1)如图所示,(2)如图所示,.【点睛】本题考查了平面直角坐标系中图形的平移与翻折,关键是确定三角形三个顶点平移与翻折后点的坐标.4、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据AB两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,ABC即为所求,SABC==【小题3】如图,A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=AP+PB= AB==【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.5、 (1)见解析(2)(-1,2),(-3,1),(2,-1)(3)4.5【解析】【分析】(1)根据网格结构找出点ABC的对应点A1B1C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.(1)A1B1C1如图所示;(2)根据图形得,A1(-1,2),B1(-3,1),C1(2,-1),故答案为:(-1,2),(-3,1),(2,-1);(3)A1B1C1的面积=5×3-×1×2-×2×5-×3×3,=15-1-5-4.5,=15-10.5,=4.5.故答案为:4.5【点睛】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键. 

    相关试卷

    八年级下册第十九章 平面直角坐标系综合与测试课后复习题:

    这是一份八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了如果点P,若点P,在平面直角坐标系中,点P等内容,欢迎下载使用。

    数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题:

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共27页。试卷主要包含了若点P,点关于轴对称的点是,在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。

    初中数学第十九章 平面直角坐标系综合与测试课堂检测:

    这是一份初中数学第十九章 平面直角坐标系综合与测试课堂检测,共25页。试卷主要包含了如图,,且点A,在平面直角坐标系中,将点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map