初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共25页。试卷主要包含了在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点关于轴的对称点是( )A. B. C. D.2、如图,在平面直角坐标系中,已知点、,对连续作旋转变换依次得到三角形(1),(2),(3),(4),,则第2020个三角形的直角顶点的坐标是( )A. B. C. D.3、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.4、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)5、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.7、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)9、在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )A. B. C. D.10、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.2、若|2x﹣4|+(y+3)2=0,点A(x,y)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.3、点 A(4,-3)关于 y 轴的对称点的坐标是______,关于原点对称的点的坐标是_________,到原点的距离是____.4、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______5、若点M(1,a)与点N(b,3)关于y轴对称,则a=___,b=___.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、B、C分别对应A1、B1、C1);(2)△A1B1C1的面积= ;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A1B1C1内部的对应点M1的坐标 ;(4)请在y轴上找出一点P,满足线段AP+B1P的值最小,并写出P点坐标 .2、如图,在平面直角坐标系中,描出点、、.(1)在平面直角坐标系中画出,则的面积是 ;(2)若点D与点C关于y轴对称,则点D的坐标为 ;(3)求线段OC的长;(4)已知P为x轴上一点,若的面积为4,求点的坐标.3、某城市的简图如图(网格中每个小正方形的边长为1个单位长度),文化馆C的坐标是(﹣2,﹣3),宾馆F的坐标是(3,1),依次完成下列各问:(1)在图中建立平面直角坐标系,写出体育馆A的坐标 ,火车站M的坐标 ;(2)学校B与火车站M关于x轴对称,请在图中标出学校的位置点B,写出点B的坐标 ,计算出图中体育馆A到学校B的直线距离AB= ;(3)如果这幅图的比例尺为1:1000(1个单位长度表示1000米),求出学校到体育馆的实际距离.4、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)△ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 5、问题背景:(1)如图①,已知中,,,直线m经过点A,直线m,直线m,垂足分别为点D,E,易证:______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在中,,D,A,E三点都在直线m上,并且有,请求出DE,BD,CE三条线段的数量关系,并证明.(3)实际应用:如图③,在中,,,点C的坐标为,点A的坐标为,请直接写出B点的坐标. -参考答案-一、单选题1、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.2、C【解析】【分析】利用勾股定理列式求出的长,再根据图形写出第(3)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2020除以3,根据商和余数的情况确定出第个三角形的直角顶点到原点的距离,然后写出坐标即可.【详解】解:点,,三角形(3)的直角顶点坐标为:第2020个三角形是第674组的第一个直角三角形,其直角顶点与第673组的最后一个直角三角形顶点重合第2020个三角形的直角顶点的坐标是.故选:C.【点睛】本题考查了坐标与图形变化旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组,依次循环是解题的关键.3、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.5、A【解析】【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(-2,1)向右平移3个单位后的坐标为(1,1),点(1,1)在第一象限.故选:A.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.6、B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.7、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、C【解析】【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.9、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.10、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、 (,)(答案不唯一) 7【解析】【分析】根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可【详解】建立如下坐标系,如图,则点如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:故答案为:(3,1);7【点睛】本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.2、(-2,3)【解析】【分析】依据非负数的性质,即可得到x,y值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,∴x=2,y=-3,∴A(2,-3),∵点A(x,y)关于x轴对称的点为B,∴B(2,3),∵点B关于y轴对称的点为C,∴C(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.3、 (-4,-3) (-4,3) 5【解析】【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;由勾股定理求得两点间的距离.【详解】解:点A(4,-3)关于y轴的对称点的坐标是(-4,-3),关于原点对称的点的坐标是(-4,3),到原点的距离是:.故答案是:(-4,-3);(-4,3);5.【点睛】此题主要考查了关于原点对称点的性质,关于坐标轴对称的点的性质,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、【解析】【分析】作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.【详解】作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示由对称的性质得:PB=PC∴AB+PA+PB=AB+PA+PC≥AB+AC即当点P在AC上时,周长最小,且最小值为AB+AC由勾股定理得:,∴周长最小值为故答案为:【点睛】本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.5、 3 【解析】【分析】根据平面直角坐标系中两个点关于坐标轴成轴对称的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,据此直接求解即可.【详解】解:∵点与点关于y轴对称,∴,,故答案为:3;.【点睛】题目主要考查平面直角坐标系中两个点关于坐标轴成轴对称的特点,理解对称点的坐标规律是解题关键.三、解答题1、 (1)见解析(2)2(3)(x,-y)(4)点P见解析,(0,2)【解析】【分析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)利用割补法进行计算,即可得到△A1B1C1的面积;(3)根据点M和M1关于x轴对称可得结果;(4)直接利用轴对称求最短路线的方法得出答案.【小题1】解:如图所示:△A1B1C1点即为所求;【小题2】△A1B1C1的面积==2;【小题3】由题意可得:M1的坐标为(x,-y);【小题4】如图所示:点P即为所求,点P的坐标为(0,2).【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.2、 (1)画图见解析,4;(2)(-4,3);(3)5;(4)(10,0)或(-6,0)【解析】【分析】(1)根据A、B、C三点的坐标,在坐标系中描出A、B、C,然后顺次连接A、B、C即可得到答案;然后根据△ABC的面积等于其所在的长方形面积减去周围三个三角形面积求解即可;(2)根据关于y轴对称的两个点的坐标特征:纵坐标相同,横坐标互为相反数求解即可;(3)过C点作轴于点D,则,,由勾股定理求解即可.(4)设P点坐标为(m,0),则,由的面积为4,得到,由此求解即可.(1)解:如图所示,△ABC即为所求;,故答案为:4;(2)解:∵点D与点C关于y轴对称,点C的坐标为(4,3),∴点D的坐标为(-4,3),故答案为:(-4,3);(3)解:连接OC,过C点作轴于点D,则.,,,在中,,,,,(4)解:∵为x轴上一点,∴可设P点坐标为(m,0),∴,∵的面积为4,∴∴或,∴或,∴P点坐标为(10,0)或(-6,0).【点睛】本题主要考查了在坐标系中描点、连线,关于y轴对称的点的坐标特征,两点距离公式,三角形面积,绝对值方程,熟知相关知识是解题的关键.3、 (1);(2);(3)学校到体育馆的距离为10000米【解析】【分析】(1)根据点C的坐标得到原点建立直角坐标系,由此得到点A及M的坐标;(2)根据轴对称的性质标出点B,得到点B的坐标,利用勾股定理求出AB的长度;(3)利用10乘以1000即可得到校到体育馆的实际距离.(1)解:建立如图所示的直角坐标系,∴A的坐标,M的坐标;故答案为:;;(2)解:在图中标出学校位置点B,B的坐标,=10;故答案为:,10;(3)解:学校到体育馆的距离为=10000米.【点睛】此题考查了确定直角坐标系,确定象限内点的坐标,轴对称的性质,勾股定理求线段的长度,比例尺计算实际距离,正确掌握象限内点的坐标特点确定坐标轴及勾股定理的计算公式是解题的关键.4、(1)画图见解析,;(2)轴,;(3)【解析】【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.5、(1)BD;CE;证明见详解;(2)DE=BD+CE;证明见详解;(3)点B的坐标为.【解析】【分析】(1)根据全等三角形的判定和性质得到,,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明,证明,根据全等三角形的性质得到,,结合图形解答即可;(3)根据,得到,,根据坐标与图形性质解答即可.【详解】(1)证明:∵,,∴,∵,∴,∵,∴,在和中,∴,∴,,∴, 即:,故答案为:BD;CE;(2)解:数量关系: ,证明:在中,,∵,,∴,在和中, ∴,∴,,∴;(3)解:如图,作轴于E,轴于F,由(1)可知,,∴,,∴,∴点B的坐标为.【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.
相关试卷
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共26页。试卷主要包含了在下列说法中,能确定位置的是,在平面直角坐标系中,点A,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份冀教版第十九章 平面直角坐标系综合与测试课后作业题,共25页。试卷主要包含了在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共20页。试卷主要包含了下列各点中,在第二象限的点是,点A关于y轴的对称点A1坐标是,点A关于轴的对称点的坐标是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。