![2022年最新冀教版八年级数学下册第十九章平面直角坐标系专题测评试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12765967/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第十九章平面直角坐标系专题测评试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12765967/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第十九章平面直角坐标系专题测评试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12765967/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评,共27页。试卷主要包含了12,则第三边长为13;,在平面直角坐标系中,点P,点A的坐标为,则点A在,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,是真命题的有( )
①以1、、为边的三角形是直角三角形,则1、、是一组勾股数;
②若一直角三角形的两边长分别是5、12,则第三边长为13;
③二次根式是最简二次根式;
④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;
⑤东经113°,北纬35.3°能确定物体的位置.
A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤
2、若点在第三象限内,则m的值可以是( )
A.2 B.0 C. D.
3、已知点和点关于轴对称,则的值为( )
A.1 B. C. D.
4、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )
A.先向左平移4个单位长度,再向上平移4个单位长度
B.先向左平移4个单位长度,再向上平移8个单位长度
C.先向右平移4个单位长度,再向下平移4个单位长度
D.先向右平移4个单位长度,再向下平移8个单位长度
5、若点在轴上,则点的坐标为( )
A. B. C. D.
6、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )
A.(2,) B.(,) C.(2,3) D.(3,)
7、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.
8、点A的坐标为,则点A在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
A.轴 B.轴
C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)
10、点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为( )
A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.
2、用坐标表示地理位置的步骤:
(1)建立坐标系,选择一个______参照点为原点,确定______和______.参照点不同,地理位置的坐标也不同.
(2)根据具体问题确定适当的______,并在坐标轴上标出______.
(3)在坐标平面内画出这些点,并写出各点的______和各个地点的名称.
3、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.
4、在平面直角坐标系中,若点到轴的距离是3,则的值是 __.
5、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:在平面直角坐标系中,点A(m,n),且m、n满足关系式m=,点B(﹣3,0),点C在x轴正半轴上,AC交y轴于点E.
(1)点A的坐标为( , );
(2)如图1,若S△ABC=15,求线段BC的长;
(3)如图2,在(2)的条件下,点E处有一动点P以每秒2个单位长度的速度先沿线段EO运动到点O,再继续以相同的速度沿x轴负半轴运动到点B后停止运动,求当t为何值时,S△AOE=S△BEP.
2、如图,的长方形网格中,网格线的交点叫做格点.点A,B,C都是格点.请按要求解答下列问题:
平面直角坐标系xOy中,点A,B的坐标分别是(-3,1),(-1,4),
(1)①请在图中画出平面直角坐标系xOy;
②点C的坐标是 ,点C关于x轴的对称点的坐标是 ;
(2)设l是过点C且平行于y轴的直线,
①点A关于直线l的对称点的坐标是 ;
②在直线l上找一点P,使最小,在图中标出此时点P的位置;
③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点的坐标(用含m,n的式子表示).
3、在的正方形网格中,小正方形的边长均为1个单位长度.
(1)画出绕点O逆时针旋转90°的;
(2)再画出关于点O的中心对称图形.
4、如图①,在平面直角坐标系xoy中,直线AB与x轴交于点A(,0),与y轴交于点B(0,4).
(1)求△ABO的面积;
(2)如图D为OA延长线上一动点,以点D为直角顶点,以BD为直角边作等腰直角△BDE,连接EA并延长EA与y轴交于点F,求OF的长;
(3)①如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO中点,若△MNO是等腰三角形,则这样的点M有多少个?直接写出答案.
②如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,请探究OM+MN有最小值吗,如果有,请求出最小值?
5、如图,已知正方形ABCD的对角线AC、BD相交于点M,顶点A,B,C的坐标分别为(1,3),(1,1),(3,1)
(1)在坐标轴中画出正方形ABCD关于x轴对称的正方形EFGH.
(2)直接写出M点坐标:______;写出点M关于直线的对称点的坐标:______;写出点M关于直线的对称点的坐标:______;
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.
【详解】
解:①以1、、为边的三角形是直角三角形,但1、、不是勾股数,故该项不是真命题;
②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;
③二次根式不是最简二次根式,故该项不是真命题;
④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;
⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;
故选:D.
【点睛】
此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.
2、C
【解析】
【分析】
根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.
【详解】
解:∵点在第三象限内,
∴
m的值可以是
故选C
【点睛】
本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标0;③第三象限的点:横坐标O'N,
∴此时NO'值最小.
在Rt△ANO'中,又∠OAE=30°,
∴O'N=12AO'=12AO=2,
∴OM+MN有最小值为2.
【点睛】
本题考查两点间距离,三角形面积,垂线性质,同角余角性质,等腰直角三角形性质与判定,三角形全等判定与性质,等腰三角形作图,线段垂直平分线,角平分线,最短路径,30°直角三角形性质,掌握以上知识是解题关键.
5、 (1)作图见详解;
(2)(2,2);(-4,2);(2n-4,2) .
【解析】
【分析】
(1)根据图象可得出点D的坐标,然后由点坐标关于x轴对称的点的特点:横坐标不变,纵坐标互为相反数可得点E、F、G、H四个点的坐标,然后顺次连接即可;
(2)根据坐标系中中点的坐标等于两个点横坐标和的一半,纵坐标和的一半可确定点M,然后由关于y=-1对称可得,纵坐标不变,两个对称点的横坐标和的一半即为对称轴,求解即可得;同理可求得点M关于y=n-1对称的点的坐标.
(1)
解:根据图象可得:D(3,3),点A、B、C、D关于x轴的对称点分别为:E(1,-3),F(1,-1),G(3,-1),H(3,-3),然后顺次连接可得:
如图所示:正方形EFGH即为所求;
(2)
由图可得:xM=xA+xD2=1+32=2,yM=yD+yC2=3+12=2,
M(2,2);
设点M关于y=-1的对称点纵坐标不变,为M'(x,2),
∴2+x2=-1,
解得:x=-4,
∴点M关于y=-1的对称点为(-4,2);
设点M关于y=n-1的对称点纵坐标不变,为M''(a,2),
∴2+a2=n-1,
解得:a=2n-4,
∴点M关于y=n-1的对称点为(2n-4,2);
故答案为:(2,2);(-4,2);(2n-4,2) .
【点睛】
题目主要考查坐标系中关于坐标轴对称的点的特点及求线段中点的坐标及作图方法,理解坐标系中关于坐标轴对称的点的特点是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共29页。试卷主要包含了如图,树叶盖住的点的坐标可能是,如图,,且点A等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共26页。试卷主要包含了在下列说法中,能确定位置的是,在平面直角坐标系中,点A,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共26页。试卷主要包含了点关于轴对称点的坐标为,若平面直角坐标系中的两点A,下列命题中为真命题的是等内容,欢迎下载使用。