![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系月考试卷(无超纲带解析)01](http://img-preview.51jiaoxi.com/2/3/12765928/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系月考试卷(无超纲带解析)02](http://img-preview.51jiaoxi.com/2/3/12765928/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系月考试卷(无超纲带解析)03](http://img-preview.51jiaoxi.com/2/3/12765928/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时练习
展开八年级数学下册第十九章平面直角坐标系月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点在第( )象限.A.一 B.二 C.三 D.四
2、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是( )
A.0<m<2 B.2<m<3 C.m<3 D.m>3
3、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是( )
A. B. C. D.或
4、点P(-3,4)到坐标原点的距离是( )
A.3 B.4 C.-4 D.5
5、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )
A. B. C. D.
6、若点在第一象限,则a的取值范围是( )
A. B. C. D.无解
7、如图,树叶盖住的点的坐标可能是( )
A. B. C. D.
8、在平面直角坐标系中,所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
10、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
A.陇海路以北 B.工人路以西
C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果点关于轴的对点的坐标为,则______.
2、在平面直角坐标系中,点P(7,6)关于x轴对称点P′的坐标是 _____.
3、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.
4、在平面直角坐标系中,如果点在y轴上,那么点M的坐标是______.
5、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)
(1)画出关于原点对称的图形,并写出点的坐标;
(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
2、如图,在平面直角坐标系中,描出点、、.
(1)在平面直角坐标系中画出,则的面积是 ;
(2)若点D与点C关于y轴对称,则点D的坐标为 ;
(3)求线段OC的长;
(4)已知P为x轴上一点,若的面积为4,求点的坐标.
3、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点、分别在轴、轴上,设点是轴上异于点、的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设.
(1)直接写出的范围;
(2)若点为轴上的动点,结合图形,求(用含的式子表示);
(3)当点为轴上的动点时,求的周长的最小值,并说明此时点的位置.
4、如图1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,点P在直线AB上,点A、P的坐标分别为,,且a、b是二元一次方程组的解.
(1)求出A、P的坐标;
(2)求OB的长;
(3)如图2,点C在第一象限,,且,,动点M从点C出发,以每秒2个单位长度的速度向点B匀速运动,到达点B(无停留,速度保持不变)再沿射线BO匀速运动,动点N从点A出发,以每秒5个单位长度的速度沿射线AB方向匀速运动,点M、N同时出发,当的面积等于的面积的2倍时,求的面积.
5、如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.
(1)直接写出的度数.
(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.
(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.
-参考答案-
一、单选题
1、D
【解析】
【分析】
第一象限内点的坐标符号为,第二象限内点的坐标符号为,第三象限内点的坐标符号为,第四象限内点的坐标符号为,根据符号特点可直接判断.
【详解】
解:点在第四象限.
故选:D.
【点睛】
本题考查的是坐标系内各象限内点的坐标特点,掌握“四个象限内点的坐标符号”是解本题的关键.
2、B
【解析】
【分析】
过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.
【详解】
解:如图,过点C作CD⊥x轴于D,
∵点A(0,2),
∴AO=2,
∵△ABC是等腰直角三角形,且AB=BC,
∴∠ABC=90°=∠AOB=∠BDC,
∴∠ABO+∠CBD=90°=∠ABO+∠BAO,
∴∠BAO=∠CBD,
在△AOB和△BDC中,
,
∴△AOB≌△BDC(AAS),
∴AO=BD=2,BO=CD=n=a,
∴0<a<1,
∵OD=OB+BD=2+a=m,
∴
∴2<m<3,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
3、A
【解析】
【分析】
根据点的平移规律可得,再根据第三象限内点的坐标符号可得.
【详解】
解:点先向左平移个单位得点,再将向上平移个单位得点,
点位于第三象限,
,
解得:,
故选:.
【点睛】
此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.
4、D
【解析】
【分析】
利用两点之间的距离公式即可得.
【详解】
解:点到坐标原点的距离是,
故选:D.
【点睛】
本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.
5、B
【解析】
【分析】
利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.
【详解】
解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).
故选:B.
【点睛】
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.
6、B
【解析】
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
7、B
【解析】
【分析】
根据平面直角坐标系的象限内点的特点判断即可.
【详解】
∵树叶盖住的点在第二象限,
∴符合条件.
故选:B.
【点睛】
本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.
8、D
【解析】
【分析】
先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:∵点的横坐标3>0,纵坐标-4<0,
∴点P(3,-4)在第四象限.
故选:D.
【点睛】
本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
9、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
10、D
【解析】
【分析】
根据位置的确定需要两个条件:方向和距离进行求解即可.
【详解】
解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
B、工人路以西只有方向,不能确定位置,故不符合题意;
C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
故选D.
【点睛】
本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
二、填空题
1、1
【解析】
【分析】
根据轴对称的性质得到a=3,b=2,代入计算即可.
【详解】
解:由题意得a=3,b=2,
∴3-2=1,
故答案为:1.
【点睛】
此题考查了轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.
2、(7,-6)
【解析】
【分析】
在平面直角坐标系中,关于x轴对称点的特征是横坐标不变,纵坐标变为原数的相反数,据此解题.
【详解】
解:点P(7,6)关于x轴对称点P′的坐标是(7,-6)
故答案为:(7,-6).
【点睛】
本题考查平面直角坐标系中关于x轴对称点的特征,是基础考点,掌握相关知识是解题关键.
3、 (,)(答案不唯一) 7
【解析】
【分析】
根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可
【详解】
建立如下坐标系,如图,则点
如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:
故答案为:(3,1);7
【点睛】
本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.
4、
【解析】
【分析】
根据轴上点的横坐标为0,即可求得的值,进而代入即可求得点的坐标.
【详解】
解:在y轴上,
,
解得,
,
点M的坐标为.
故答案为:.
【点睛】
本题考查了点的坐标,熟知y轴上的点的横坐标为0是解答本题的关键.
5、(,)
【解析】
【分析】
探究规律,利用规律解决问题即可.
【详解】
解:观察图象可知,点的位置是8个点一个循环,
∵228=26,
∴A22与A6的位置在第三象限,且在经过点A2、M的直线上,
∵第一个等腰直角三角形的直角边长为1,
∴点A2(0,3),
设直线A2M的解析式为y=kx+3,
把M点的坐标(-1,2)代入得:-k+3=2,
解得:k=1,
∴直线A2M的解析式为y=x+3,
即A22点在直线y=x+3上,
第二个等腰直角三角形的边长为,
…,
第n个等腰直角三角形的边长为()n-1,
∴第22个等腰直角三角形的边长为()21,可得A22M=()21,
∴A21 A1=+1,
∴A22 的横坐标为:,
A22 的纵坐标为:,
∴A22(,),
故答案为:(,).
【点睛】
本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.
三、解答题
1、 (1)见解析,;
(2)见解析,
(3)绕点O顺时针时针旋转
【解析】
【分析】
(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;
(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;
(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.
(1)
解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:
(2)
解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:
(3)
解:根据题意得:绕点O顺时针时针旋转后可直接得到.
【点睛】
本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.
2、 (1)画图见解析,4;
(2)(-4,3);
(3)5;
(4)(10,0)或(-6,0)
【解析】
【分析】
(1)根据A、B、C三点的坐标,在坐标系中描出A、B、C,然后顺次连接A、B、C即可得到答案;然后根据△ABC的面积等于其所在的长方形面积减去周围三个三角形面积求解即可;
(2)根据关于y轴对称的两个点的坐标特征:纵坐标相同,横坐标互为相反数求解即可;
(3)过C点作轴于点D,则,,由勾股定理求解即可.
(4)设P点坐标为(m,0),则,由的面积为4,得到,由此求解即可.
(1)
解:如图所示,△ABC即为所求;
,
故答案为:4;
(2)
解:∵点D与点C关于y轴对称,点C的坐标为(4,3),
∴点D的坐标为(-4,3),
故答案为:(-4,3);
(3)
解:连接OC,
过C点作轴于点D,
则.
,
,,
在中,,,,
,
(4)
解:∵为x轴上一点,
∴可设P点坐标为(m,0),
∴,
∵的面积为4,
∴
∴或,
∴或,
∴P点坐标为(10,0)或(-6,0).
【点睛】
本题主要考查了在坐标系中描点、连线,关于y轴对称的点的坐标特征,两点距离公式,三角形面积,绝对值方程,熟知相关知识是解题的关键.
3、 (1)或
(2)或
(3)只有当点在轴的正半轴上且在点的左边时, 的周长取得最小值且为8.
【解析】
【分析】
(1)先确定点在轴上的范围,再确定的范围即可;
(2)分类讨论,结合平行线的性质,求出或的度数即可;
(3)当点在点、之间时,过点作且交轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.
(1)
解:∵的另一边一定在边的左边或上方且与轴交于点,
∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,
∴BN∥OC,
∴的另一边与轴没有交点,
∴点一定在(8,0)左侧,
当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,;
所以,的范围是或;
(2)
解:当点在点、之间时,此时,
∵BC∥OA,
∴,
∵∠MBN=45°,
∴,
,
∵与互余,
,
当点在点的左边时,此时,
同理可得,,
;
当点在点的右边且在(8,0)左侧时,据题意,同理可得,,
则,
;
(3)
解:当点在点、之间时,如图①,
过点作且交轴于点,
,,
,
又,,
,
,,又,,
,
,而的周长为,
当点在点的左边时,如图②,
必有,,
,
而,,故,
当点在点的右边时,如图③,则,,
,而,,
,
综上所述,只有当点在轴的正半轴上且在点的左边时,
的周长取得最小值且为8.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.
4、 (1)A(8,0),P(-4, 9)
(2)6;
(3)24或60
【解析】
【分析】
(1)解方程组可求a, b的值,即可求解;
(2)由面积关系可求解;
(3)分两种情况讨论,由面积法可求OE的长,由面积关系可求解.
(1)
解:
解这个方程组得:
∴2a=2×4=8,-a=-4,3b=3×3=9,
∴A(8,0),P(-4, 9);
(2)
如图1,过点P作PH⊥x轴于H,连接BH,
∵A(8,0),P(-4, 9),
∴OA=8,ОН=4,PH=9,
∴S△APH = S△ABH + SPHB ,
∴
∴OB=6;
(3)
设运动时间为ts,
∴BC=OВ,
∴BC= 4,
当0≤ t ≤2吋,如图2,过点O作OE⊥AB于 E,
∴S△AOB=
∴
∴S△AON =
∴S△ABM=
∵△ AON的面积等于△ABM的面积的2倍,
∴12t=2 (12-6t),
∴t= 1,
∴S△PON = S△AOP-S△AON =;
当t > 2时,如图3,
∴S△ABM= ,
∵△ AON的面积等于△ABM的面积的2倍,
∴12t=2×(8t- 16),
∴t= 8,
∴S△PON = S△AON-S△AOP =;
综上所述:△PON的面积为24或60.
【点睛】
本题考查了平面直角坐标系,三角形综合题,二元一次方程组的应用,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.
5、(1);(2);(3).
【解析】
【分析】
(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得
(3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值.
【详解】
(1)∵点在x轴负半轴上,
∴,,
∵,,
∴,
∵,
∴,
∴,
如答图1,在x轴的正半轴上取点C,使,连接BC,
∵,
∴,
又∵,
∴,
∴,
∴是等边三角形,
∴;
(2)如答图2,连接BM,
∴是等边三角形,
∵,,
∵∠,
∴,
∴,
∵D为AB的中点,
∴,
∵,
∴,
∴,在和中,
∴,
∴,即,
∴,
∴为等边三角形,
∴,∴;
(3)如答图3,过点F作轴交CB的延长线于点N,
则,
∵,
∴,
在和中,
∴,
∴,,
∵,
∴,
又∵E是OC的中点,设,
∴等边三角形ABC的边长是4a,,
∵,
∴,
在和中,
∴,
∴,
又∵,
∴,
,
∴.
【点睛】
本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试习题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试习题,共21页。试卷主要包含了点关于轴对称的点是,已知点A等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共22页。试卷主要包含了在平面直角坐标系xOy中,点A,如果点P等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共22页。试卷主要包含了点P关于y轴对称点的坐标是.,下列命题中,是真命题的有,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。