初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共27页。试卷主要包含了已知点P的坐标为,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,树叶盖住的点的坐标可能是( )A. B. C. D.2、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点4、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)5、如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将三角形ABC绕点P旋转90°,得到△A′B′C′,则点P的坐标为( )A.(0,4) B.(1,1) C.(1,2) D.(2,1)6、已知点P的坐标为(﹣2,3),则点P到y轴的距离为( )A.2 B.3 C.5 D.7、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.8、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,在x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为( )A. B. C. D.9、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)10、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,(1)当△ABP成为等边三角形时,点 P的坐标为________.(2)若∠APB<45°,则 t的取值范围为_______.2、如果点关于轴的对点的坐标为,则______.3、已知点在一、三象限的角平分线上,则的值为______.4、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.5、点A(2,1)关于x轴对称的点B的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy中有一个,其中点.(1)若与关于x轴对称,直接写出三个顶点的坐标;(2)作关于直线m的对称图形,并写出和的坐标.2、如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形AʹBʹCʹ,点A,B,C的对应点分别为Aʹ,Bʹ,Cʹ.(1)写出点Aʹ,Bʹ,Cʹ的坐标;(2)在图中画出平移后的三角形AʹBʹCʹ;(3)求三角形AʹBʹCʹ的面积.3、已知三顶点在如图所示的平面直角坐标系中的网格点位置.(1)写出,,三点的坐标;(2)若各顶点的纵坐标都不变,横坐标都乘以,在同一坐标系中描出对应的点,,,并依次连接这三个点得;(3)求的面积.4、如图,在平面直角坐标系中,点O为坐标原点,点中的横坐标x与纵坐标y满足,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标.5、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)△ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 -参考答案-一、单选题1、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴符合条件.故选:B.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.2、D【解析】【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.3、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.4、C【解析】【分析】根据轴对称的性质解决问题即可.【详解】解:∵△ABC关于直线y=1对称,∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,∵点A的坐标是(3,4),∴B(3,﹣2),故选:C.【点睛】本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.5、C【解析】【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P.【详解】解:选两组对应点,连接后作其中垂线,两中垂线的交点即为点P,由图知,旋转中心P的坐标为(1,2)故选:C.【点睛】本题主要考查坐标与图形的变化﹣旋转,解题的关键是掌握旋转变换的性质.6、A【解析】【分析】若点 则到轴的距离为 到轴的距离为 从而可得答案.【详解】解:点P的坐标为(﹣2,3),则点P到y轴的距离为 故选A【点睛】本题考查的是点到坐标轴的距离,掌握“点的坐标与点到轴的距离的联系”是解本题的关键.7、B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.8、C【解析】【分析】求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.【详解】解:过点A作AC⊥OB于C,∵,∠AOB=,∴,∴,∴A.∵,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转,∴第1秒时,点A的对应点的坐标为,∵三角板每秒旋转,∴此后点的位置6秒一循环,∵,∴则第2022秒时,点A的对应点的坐标为,故选:C【点睛】此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.9、C【解析】【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.10、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、 (0,)或(0,-); t>2+或t<-2-.【解析】【分析】(1)根据△ABP成为等边三角形,点A(2,0),B(-2,0),得出AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解方程即可;(2)分两种情况,点P在x轴上方,∠APB=45°,根据点P在y轴上,OA=OB=2,可得OP为AB的垂直平分线,得出AP=BP,根据等腰三角形三线合一性质得出∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,可证△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,根据三角形外角∠AOC是△PCA的外角性质得出∠CPA=∠CAP,求出点P(0,2+),根据远离AB角度变小知当∠APB<45°时,t>2+,当点P在x轴下方,利用轴对称性质,求出点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-即可.【详解】解:(1)∵△ABP成为等边三角形,点A(2,0),B(-2,0),∴AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解得,∴点P(0,)或(0,-),故答案为(0,)或(0,-);(2)分两种情况,点P在x轴上方,∠APB=45°,∵点P在y轴上,OA=OB=2,∴OP为AB的垂直平分线,∴AP=BP,∴∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,∴△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,∵∠AOC是△PCA的外角,∴∠ACO=∠CPA+∠CAP=45°,∵∠APO=22.5°,∴∠CAP=45°-∠CPA=45°-∠APO=45°-22.5°=22.5°,∴∠CPA=∠CAP,∴CP=AC=,∴OP=OC+CP=2+∴点P(0,2+)当∠APB<45°时,t>2+,当点P在x轴下方,利用轴对称性质,点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-,综合得∠APB<45°,则 t的取值范围为t>2+或t<-2-.故答案为t>2+或t<-2-.【点睛】本题考查等边三角形的性质,勾股定理,图形与坐标,等腰直角三角形,线段垂直平分线,等腰三角形三线合一性质,轴对称性质,掌握以上知识是解题关键.2、1【解析】【分析】根据轴对称的性质得到a=3,b=2,代入计算即可.【详解】解:由题意得a=3,b=2,∴3-2=1,故答案为:1.【点睛】此题考查了轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.3、1【解析】【分析】直接利用一、三象限的角平分线上点横纵坐标相等进而得出答案.【详解】解:∵点P(a,2a−1)在一、三象限的角平分线上,∴a=2a−1,解得:a=1.故选:C.【点睛】此题主要考查了点的坐标,正确掌握一、三象限的角平分线上点的坐标关系是解题关键.4、 (,)(答案不唯一) 7【解析】【分析】根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可【详解】建立如下坐标系,如图,则点如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:故答案为:(3,1);7【点睛】本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.5、【解析】【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此解答即可.【详解】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,-1),故答案为:(2,-1)【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.三、解答题1、(1),,;(2)作图见解析;,.【解析】【分析】(1)根据关于x轴对称横坐标不变,纵坐标互为相反数即可解决问题;(2)作出A,B,C的对应点A2,B2,C2即可;【详解】解:(1)∵三个顶点坐标分别为:,,,∴三个顶点坐标分别为:,,.(2)如图所示:、的坐标分别为:,.【点睛】本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型.2、 (1)Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)见解析(3)△AʹBʹCʹ的面积为7.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用(1)中所求对应点位置画图形即可;(3)利用△AʹBʹCʹ所在矩形面积减去周围多余三角形的面积进而得出答案.(1)解:根据平移的性质得: Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)解:如图所示:△AʹBʹCʹ即为所求;(3)解:△AʹBʹCʹ的面积为:4×5-×2×4-×1×3-×3×5=7.【点睛】本题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.3、 (1),,;(2)见解析;(3)的面积为3.5.【解析】【分析】(1)根据点在坐标系中的位置可直接读出点的坐标;(2)纵坐标都不变,横坐标都乘以−1,得,,,然后依次连接即可得;(3)在方格点中利用正方形的面积减去三个三角形的面积即可得.(1)解:根据点在坐标系中的位置可得:,,;(2)解:纵坐标都不变,横坐标都乘以−1,可得:,,,然后依次连接,即为所求;(3)解:的面积为:,∴的面积为.【点睛】题目主要考查坐标与图形变换,点的变换等,理解题意,熟练掌握点的变换是解题关键.4、 (1)A(2,8),E(-6,0);(2)S=m+24;(3)点P坐标为(2,)或(2,)或(2,)【解析】【分析】(1)根据求出x,y,得到A的坐标,根据,求出OE得到E的坐标;(2)由DE=6=AD,求出OF=OE=6,根据平移的性质得到CD=8,G(10,m),延长BA交y轴于H,则BH⊥y轴,则OH=AD=8,求出HF=2,根据三角形DFG的面积为S=代入数值求出答案;(3)由求得 G(10,2),设运动时间为t秒,分两种情况:当时,当时,利用面积加减关系求出△FGP与△AGQ的面积,得方程求解即可.(1)解:∵,∴x-2=0,y-8=0,得x=2,y=8,∴A(2,8),∴AD=8,OD=2,∵,∴OE=8-2=6,∴E(-6,0);(2)解:∵OD=2,OE=6,∴DE=6=AD,∵AD⊥x轴,∴∠AED=∠EAD=45°,∵∠EOF=90°,∴∠EFO=45°=∠OEF,∴OF=OE=6,∵将线段AD向右平移8个单位长度,得到线段BC, ∴B(10,8),C(10,0),BC⊥x轴,x轴,CD=8,∴G(10,m),延长BA交y轴于H,则BH⊥y轴,则OH=AD=8, ∴HF=2,三角形DFG的面积为S===m+24; (3)解:当时,m+24=26,得m=2,∴G(10,2),设运动时间为t秒,当时,,,∵三角形FGP的面积是三角形AGQ面积的2倍,∴,得t=,∴P(2,);当时,, ,∴,得t=或t=,∴P(2,)或P(2,),综上,点P坐标为(2,)或(2,)或(2,).【点睛】此题考查了算术平方根的非负性,绝对值的非负性,线段平移的性质,三角形面积的计算公式,图形中动点问题,解题中注意运用分类思想解决问题是关键,避免漏解的现象.5、(1)画图见解析,;(2)轴,;(3)【解析】【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
这是一份初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题,共28页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,若点在轴上,则点的坐标为,在下列说法中,能确定位置的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共27页。试卷主要包含了在平面直角坐标系xOy中,点A,已知点A等内容,欢迎下载使用。