冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共24页。
八年级数学下册第十九章平面直角坐标系同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点关于轴对称的点是( )A. B. C. D.2、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )A. B. C. D.3、点P(-3,4)到坐标原点的距离是( )A.3 B.4 C.-4 D.54、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点5、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)7、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )A. B. C. D.8、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.9、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )A. B. C. D.10、点关于轴的对称点是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy中,点A(-3,0),B(-1,2).以原点O为旋转中心,将△AOB顺时针旋转90°,再沿y轴向下平移两个单位,得到△A′O′B′,其中点A′与点A对应,点B′与点B对应.则点B′的坐标为__________ .2、如图,是某学校的平面示意图.如果用(5,1)表示学校大门的位置,那么运动场表示为_____,(8,5)表示的场所是_____________. 3、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______4、平面直角坐标系中,将点A(﹣2,1)向右平移4个单位长度,再向下平移3个单位长度得到点A′,则点A′的坐标为_____.5、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每个小正方形的边长为1个单位长度,、、三点在格点上(网格线的交点叫做格点),现将先向上平移4个单位长度,再关于轴对称得到.(1)在图中画出,点的坐标是______;(2)连接,线段的长度为______;(3)若是内部一点,经过上述变换后,则内对应点的坐标为______.2、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积.3、△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△A1B1C1关于x轴对称的△A2B2C2.(3)求△AA1A2的面积4、如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且+(a+2b﹣4)2=0.(1)在坐标轴上存在一点M,使COM的面积=ABC的面积,求出点M的坐标;(2)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变,若不变,求其值;若改变,说明理由.5、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1(2)写出点A1,B1,C1的坐标. -参考答案-一、单选题1、C【解析】【分析】由题意可分析可知,关于轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据轴对称的性质,得点关于轴对称的点是.故选:C.【点睛】本题考查了对称点的坐标规律,解题的关键是掌握相应的规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、B【解析】【分析】根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.【详解】解:∵用表示5排7座∴坐标的第一个数表示排,第二个数表示座∴小嘉坐在7排8座可表示出(7,8).故选B.【点睛】本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.3、D【解析】【分析】利用两点之间的距离公式即可得.【详解】解:点到坐标原点的距离是,故选:D.【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.4、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.5、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.6、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.7、C【解析】【分析】过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点A作AC⊥x轴于点C, 设 ,则 ,∵ ,,∴,∵, ,∴ ,解得: ,∴ ,∴ ,∴点 ,∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.8、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.9、A【解析】【分析】根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.【详解】解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=,OA2=,OA3=,……,OA1033=,∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,1033=8×129+1,∴点A1033在x轴负半轴,∵OA1033=,∴点A1033的坐标为:,故选:A.【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.10、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.二、填空题1、【解析】【分析】根据题意画出相应的图形即可解答.【详解】解:根据题意画出图形,如图所示:由图知,以原点O为旋转中心,将△AOB顺时针旋转90°,点B对应的坐标为(2,1),再沿y轴向下平移两个单位,对应的点B′坐标为(2,-1),故答案为:(2,-1).【点睛】本题考查坐标与图形变换-旋转、坐标与图形变换-平移,正确画出变换后的图形是解答的关键.2、 (6,8) 宿舍楼【解析】略3、【解析】【分析】作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.【详解】作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示由对称的性质得:PB=PC∴AB+PA+PB=AB+PA+PC≥AB+AC即当点P在AC上时,周长最小,且最小值为AB+AC由勾股定理得:,∴周长最小值为故答案为:【点睛】本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.4、(2,-2)【解析】【分析】利用点平移的坐标规律,把A点的横坐标加4,纵坐标减3即可得到点A′的坐标.【详解】解:将点A(-2,1)向右平移4个单位长度,再向下平移3个单位长度得到点A',则点A′的坐标是(-2+4,1-3),即A′(2,-2).故答案为:(2,-2).【点睛】此题主要考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5、 (4,2) (0,4)或(0,-4)【解析】【分析】根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;【详解】解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,∴点D的坐标为(4,2);同理可得点C的坐标为(0,2),∴OC=2,∵A(-1,0),B(3,0),∴AB=4,∴,设点P到AB的距离为h,∴S△PAB=×AB×h=2h,∵S△PAB=S四边形ABDC,得2h=8,解得h=4,∵P在y轴上,∴OP=4,∴P(0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.三、解答题1、(1)画图见解析,;(2);(3)【解析】【分析】(1)分别确定平移与轴对称后的对应点 再顺次连接 再根据的位置可得其坐标;(2)利用勾股定理求解的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,是所求作的三角形,其中 (2)由勾股定理可得: 故答案为: (3)由平移的性质可得:向上平移4个单位长度后的坐标为: 再把点沿轴对折可得: 故答案为:【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键.2、(1)见解析;(2).【解析】【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.3、 (1)图见解析,点C1的坐标为(2)图见解析(3)16【解析】【分析】(1)利用轴对称变换的性质分别作出,,的对应点,,即可;(2)利用轴对称变换的性质分别作出,,的对应点,,即可;(3)利用三角形面积公式求解即可.(1)解:如图,△即为所求,点的坐标;(2)解:如图,△即为所求;(3)解:.【点睛】本题考查作图轴对称变换,三角形面积等知识,解题的关键是掌握轴对称变换的性质,属于中考常考题型.4、 (1)或(2)2【解析】【分析】(1)根据算术平方根的非负性,完全平方的非负性,求得的值,进而求得的坐标,分类讨论点在轴或轴上,根据三角形的面积公式进行计算即可;(3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.(1)+(a+2b﹣4)2=0.解得又C(﹣1,2) ①若点在轴上时,设COM的面积=ABC的面积,解得②若点在轴上时,设COM的面积=ABC的面积,解得综上所述,点M的坐标为或(2)的值不变,理由如下:∵CD⊥y轴,AB⊥y轴,∴∠CDO=∠DOB=90°,∴AB∥CD,∴∠OPD=∠POB.∵OF⊥OE,∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,∵OE平分∠AOP,∴∠POE=∠AOE,∴∠POF=∠BOF,∴∠OPD=∠POB=2∠BOF.∵∠DOE+∠DOF=∠BOF+∠DOF=90°,∴∠DOE=∠BOF,∴∠OPD=2∠BOF=2∠DOE,∴=2.【点睛】本题考查了非负性,二元一次方程组,三角形面积公式,平行线的性质等知识,解决问题的关键是灵活运用所学知识解决问题,学会利用分类讨论思想解决问题.5、 (1)见解析(2)A1(1,5),B1(1,0),C1(4,3)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据A1,B1,C1的位置写出坐标即可.(1)解:所作图形△A1B1C1如下所示:(2)解:根据所作图形知:A1(1,5),B1(1,0),C1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共28页。试卷主要包含了下列各点中,在第二象限的点是,在平面直角坐标系中,A,下列命题中为真命题的是,在平面直角坐标系xOy中,点M等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共22页。试卷主要包含了12,则第三边长为13;,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共24页。试卷主要包含了点A关于y轴的对称点A1坐标是,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。