![2022年精品解析冀教版八年级数学下册第二十章函数章节练习试卷(精选含答案)01](http://img-preview.51jiaoxi.com/2/3/12765642/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版八年级数学下册第二十章函数章节练习试卷(精选含答案)02](http://img-preview.51jiaoxi.com/2/3/12765642/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版八年级数学下册第二十章函数章节练习试卷(精选含答案)03](http://img-preview.51jiaoxi.com/2/3/12765642/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第二十章 函数综合与测试练习
展开冀教版八年级数学下册第二十章函数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:
①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
2、小明家、公园、图书馆依次在一条直线上,周末,小明和妈妈准备去公园放风筝,但是因为小明要先去图书馆还书,所以他们同时从家出发,并约定2小时后在公园碰头.小明先骑自行车匀速前往图书馆,到达图书馆还书后按原路原速返回公园并按照约定时间准时到达公园,妈妈则匀速步行前往公园,结果迟到半小时.如图是他们离家的距离y(km)与小明离家时间x(h)的函数图象,下列说法中错误的是( )
A.小明骑车的速度是20km/h
B.小明还书用了18min
C.妈妈步行的速度为2.4km/h
D.公园距离小明家8km
3、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
4、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是( )
A.表示的是小江步行的情况,表示的是小北步行的情况
B.小江的速度是45米/分钟,小北的速度是60米/分钟
C.小江比小北先出发16分钟.
D.小北出发后8分钟追上小江
5、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
6、下列图像中表示是的函数的有几个( )
A.1个 B.2个 C.3个 D.4个
7、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为(千米),速度为(千米/分),时间为(分)下列函数图象能表达这一过程的是( )
A. B.
C. D.
8、下面分别给出了变量x与y之间的对应关系,其中y是x函数的是( )
A. B.C. D.
9、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
10、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )
A.800元 B.600元 C.1200元 D.1000元
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知三角形底边长为4,高为,三角形的面积为,则与的函数关系式为______.
2、函数的图象不经过横坐标是_____的点.
3、在函数中,自变量x的取值范围是______.
4、像y=0.5x+10这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的__________.
5、函数 的定义域是________.
三、解答题(5小题,每小题10分,共计50分)
1、甲乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过200元后,超出200元的部分按85%收费,在乙商店累计超过100元后,超出部分按照90%收费.
(1)若你准备用80元去购物,你会怎样选择商场来购物?若你准备用160元去购物,选择到哪家商场购物花费少?(直接回答)
(2)设你购物花费x(x>200)元,实际花费为y元.分别写出在甲、乙两个商场购物时,y与x的函数关系式;
(3)在(2)的情况下,请根据两家商场的优惠活动方案,讨论到哪家商场购物花费少?说明理由.
2、甲、乙两车从城出发沿一条笔直公路匀速行驶至城,在整个行驶过程中,甲、乙两车离开城的距离与甲车行驶的时间之间的函数关系如图所示.
(1)、两城相距_____千米,乙车比甲车早到______小时;
(2)求出点坐标;
(3)两车都在行驶的过程中,当甲、乙两车相距40千米时,_____.
3、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.
(1)爷爷这一天从公园返回到家用多长时间?
(2)爷爷散步时最远离家多少米?
(3)爷爷在公园锻炼多长时间?
(4)直接写出爷爷在出发后多长时间离家450m.
4、滑车以1.5米/分钟的速度匀速地从轨道的一端滑向另一端,已知轨道的长为6米,滑车滑行分钟时离终点的路程为米.
(1)求关于的函数关系式,并写出自变量的取值范围;
(2)滑行多长时间时,滑车离终点1米?
5、请根据函数相关知识,对函数y=2|x﹣3|﹣1的图象与性质进行探究,并解决相关问题.
①列表;②描点;③连线.
x | … | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
y | … | 5 | m | 1 | ﹣1 | 1 | 3 | n | 7 | … |
(1)函数自变量x的取值范围是 .
(2)表格中:m= ,n= .
(3)在直角坐标系中画出该函数图象.
(4)观察图象:
①当x 时,y随x的增大而减小;
②若关于x的方程2|x﹣3|﹣1=a有两个不同的实数根,则a的取值范围是 .
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.
【详解】
解:乙从B地到A共行走24km,故①A、B两地相距正确;
乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,
∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;
甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,
∴48-40=8km/h,
故③甲车的速度比乙车慢正确;
设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,
∴40t+48t=24,
解得h,
故④两车出发后,经过0.3小时,两车相遇不正确.
故选择B.
【点睛】
本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.
2、D
【解析】
【分析】
根据小明1小时到达图书馆,图书馆距离家20千米,求出小明骑车的速度判断A选项;根据小明还书用了0.3小时判断B选项;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2列出方程求出方程的解来判断C选项;根据妈妈的速度×妈妈所用的时间求公园距离小明家的距离来判断D选项.
【详解】
解:观察图象可知,小明1小时到达图书馆,图书馆距离家20千米,小明骑车的速度是20千米/小时,故A选项不符合题意;
1.3﹣1=0.3(小时)=18(分),故B选项不符合题意;
设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2得:2.5a+20×(2﹣1.7)=20×2,解得a=2.4,故C选项不符合题意;
2.4×2.5=6(千米),故D选项符合题意;
故选:D.
【点睛】
本题考查了函数的图象,求出妈妈的速度是解题的关键.
3、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
4、C
【解析】
【分析】
观察图象,可得:表示的是小北步行的情况,表示的是小江步行的情况,可得A错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C正确;设小北出发后 分钟追上小江,则 ,解出可得D错误,即可求解.
【详解】
解:根据题意得:
A、因为小江先出发一段时间后小北再出发,所以表示的是小北步行的情况,表示的是小江步行的情况,故本选项不符合题意;
B、小江的速度是米/分钟,小北的速度是米/分钟,故本选项不符合题意;
C、观察图象,得:小江比小北先出发 分钟,故本选项符合题意;
D、设小北出发后 分钟追上小江,则 ,解得: ,即小北出发后16分钟追上小江,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.
5、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
6、A
【解析】
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
7、C
【解析】
【分析】
因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.
【详解】
解:∵400×5=2000(米)=2(千米),
∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米,
而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,
故排除选项A与B;
又∵回到原出发地”表示终点的纵坐标为0,
∴排除选项D,
故选:C.
【点睛】
本题考查了函数的图象,解题的关键是理解函数图象的意义.
8、D
【解析】
【分析】
函数的意义反映在图象上简单的判断方法是:做垂直轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
解:根据函数的意义可知:对于自变量的任何值,都有唯一的值与之相对应,所以D正确.
故选:D.
【点睛】
本题主要考查了函数图象的读图能力,解题的关键是要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
9、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
10、D
【解析】
【分析】
将代入函数关系式即可得.
【详解】
解:将代入得:,
即获利为1000元,
故选:D.
【点睛】
本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.
二、填空题
1、
【解析】
【分析】
根据三角形面积公式可得结果.
【详解】
解:由题意,
故答案为:.
【点睛】
本题考查了三角形的面积公式,根据题意,找到所求量的等量关系是解决问题的关键.
2、-3
【解析】
【分析】
根据分式有意义的条件:分母不为0解答即可.
【详解】
解:函数要有意义,需要,所以不经过横坐标是的点.
故答案为:-3.
【点睛】
本题主要考查了函数的自变量取值范围,掌握代数式有意义时字母的取值范围是解题关键.
3、
【解析】
【分析】
根据分式有意义的条件即可求得自变量x的取值范围.
【详解】
有意义的条件
自变量x的取值范围是
故答案为:
【点睛】
本题考查了分式有意义的条件,函数的自变量取值范围,掌握分式有意义的条件是解题的关键.
4、解析式
【解析】
略
5、x≠-1
【解析】
【分析】
根据分母不为零,即可求得定义域.
【详解】
解:由题意,
即
故答案为:
【点睛】
本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.
三、解答题
1、(1)准备用80元去购物,选择两个商场都一样;当准备用160元去购物,选择到乙商场购物花费少;(2)在甲商场购物:y=0.85x+30,在乙商场购物:y=0.9x+10;(3)当购物超过200元却少于400元时,到乙商场购物花费少;当购物400元时,到甲、乙两家商场购物花费一样;当购物超过400元时,到甲商场购物花费少.
【解析】
【分析】
(1)由于准备用80元去购物,没有达到甲、乙商场优惠标准,因此选择两个商场的结果一样;然后计算出买160元的东西分别在甲、乙两商场的花费,然后得出在乙商场更少;
(2)根据甲、乙的优方案进行解答;
(3)根据(2)中表示出在甲乙两商场的花费列出的不等式,分情况讨论,求出最合适的消费方案.
【详解】
解:(1)∵准备用80元去购物,没有达到甲乙两种方案的优惠标准,
∴选择两个商场的结果一样;
在甲商场购买160元的东西需要花费:160(元),
在乙商场购买160元的东西需要花费:100+60×0.90=154(元),
∵160>154,
∴去乙商场花费少;
答:准备用80元去购物,选择两个商场都一样;当准备用160元去购物,选择到乙商场购物花费少;
(2)由题意得:在甲商场购物:y=200+(x﹣200)×85%=0.85x+30,
在乙商场购物:y=100+(x﹣100)×90%=0.9x+10;
(3)①若在甲商场花费少,则0.85x+30<0.9x+10,
解得x>400,
所以当购物超过400元时,到甲商场购物花费少;
②若在乙商场花费少,则0.85x+30>0.9x+10,
解得x<400,
所以当购物超过200元却少于400元时,到乙商场购物花费少;
③若到两家商场花费一样多时,则0.85x+30=0.9x+10,
解得x=400,
所以当购物400元时,到甲、乙两家商场购物花费一样.
答:当购物超过200元却少于400元时,到乙商场购物花费少;当购物400元时,到甲、乙两家商场购物花费一样;当购物超过400元时,到甲商场购物花费少.
【点睛】
本题主要考查了一元一次不等式的实际应用,求函数关系式,解题的关键在于能够根据题意得到相应的关系式进行求解.
2、 (1)300千米,1小时
(2)
(3)或
【解析】
【分析】
(1)根据图象,即可求解;
(2)根据图象,可得乙车在点追上甲车,再求出两车的速度,然后设甲车出发小时后,乙车追上甲车,可得,解出即可求解;
(3)分两种情况讨论,即可求解.
(1)
解:由图象可得,
,两城相距300千米,乙车比甲车早到(小时);
(2)
解:由图象可得,乙车在点追上甲车,
甲车的速度为(千米/时),乙车的速度为(千米/时),
设甲车出发小时后,乙车追上甲车,
,
解得,
∴(千米),
∴点;
(3)
解:根据题意得:当乙车没有追上甲车前,甲、乙两车相距40千米时,
,
解得: ;
当乙车超过甲车后,甲、乙两车相距40千米时,
,
解得:;
综上所述,当甲、乙两车相距40千米时,或.
【点睛】
本题主要考查了函数图象,从函数图象获取准确信息,并利用数形结合思想解答是解题的关键.
3、(1)15;(2)900;(3)10;(4)10分钟或分钟
【解析】
【分析】
(1)根据图中表示可得结果;
(2)根据图象可知最远就是到公园的距离;
(3)根据图象可得平行的部分就是在公园的时间;
(4)求出相应直线的函数解析式,即可得解;
【详解】
(1)由图可知,时间为(分);
(2)由图可知,最远离家900米;
(3)爷爷在公园锻炼的时间(分);
(4)如图,设直线AB所在解析式为,
把点代入可得:,
∴解析式为,
当时,;
设直线CD所在解析式为,
把点,代入得,
,解得,
∴解析式为,
当时,;
∴爷爷在出发后10分钟或分钟离家450m.
【点睛】
本题主要考查了函数图像的应用,准确分析计算是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)先求得的范围,根据题意,列出关于的函数关系式,
(2)根据(1)的关系式,将代入求解即可.
【详解】
解:(1)
由题意,得;
关于的函数关系式为
(2)当时,,
解得,
答:滑行分钟时,滑车离终点1米.
【点睛】
本题考查了变量与关系式,理解题意,列出关系式是解题的关键.
5、(1)全体实数;(2)3,5;(3)见解析;(4)①≤3;②a>-1.
【解析】
【分析】
(1)由绝对值的定义即可确定x的取值范围;
(2)将x=1和x=6分别代入解析式即可求得m和n的值;
(3)根据表格已有数据、描点、连线即可得到函数图象;
(4)①根据函数图象即可解答;②根据函数图像得到函数的性质,再运用性质解答即可
【详解】
解:(1)由绝对值的定义可知,x-3可取全体实数,
∴x的取值范围是全体实数,
故填:全体实数;
{2)当x=1时,m=2×|1-3|-1=3;
当x=6时,n=2×|6-3|-1=5,
故填:3,5;
(3)根据表中数据,描点,连线如下图所示:
(4)①由图可知,当x≤3时,y随x的增大而减小,
故填≤3;
∵关于x的方程2|x-3|-1=a有两个不同的实数根,
∴函数y=2|x-3|-1与函数y=a的函数图象有两个不同的交点,
∴a>-1.
故填a>-1.
【点睛】
本题主要考查了一次函数图象上点的坐标、分段函数的图象,准确画出函数的图象并灵活运用函数图象得到函数的性质成为解答本题的关键.
冀教版八年级下册第二十章 函数综合与测试同步练习题: 这是一份冀教版八年级下册第二十章 函数综合与测试同步练习题,共23页。
初中数学第二十章 函数综合与测试复习练习题: 这是一份初中数学第二十章 函数综合与测试复习练习题,共26页。试卷主要包含了在函数中,自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
初中数学第二十章 函数综合与测试课后复习题: 这是一份初中数学第二十章 函数综合与测试课后复习题,共21页。试卷主要包含了下列图像中表示是的函数的有几个,函数的自变量x的取值范围是等内容,欢迎下载使用。