初中数学冀教版八年级下册第二十章 函数综合与测试课后测评
展开这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后测评,共29页。试卷主要包含了在函数中,自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图1所示,直角三角形中,,且.设直线截此三角形所得的阴影部分面积为,与之间的函数关系的图象为图2所示,则的周长为( )
A. B. C. D.
2、下列四个图象中,能表示y是x的函数的是( )
A. B.
C. D.
3、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )
A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米
C.小南到达景区时共用时7.5小时 D.家距离景区共400千米
4、根据如图所示的程序计算函数的值,若输入的值为1,则输出的值为2;若输入的值为,则输出的值为( ).
A. B. C.4 D.8
5、在函数中,自变量x的取值范围是( )
A. B. C. D.
6、函数y=中,自变量x的取值范围是( )
A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3
7、函数中,自变量x的取值范围是( )
A. B.且 C. D.且
8、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是( )
A.表示的是小江步行的情况,表示的是小北步行的情况
B.小江的速度是45米/分钟,小北的速度是60米/分钟
C.小江比小北先出发16分钟.
D.小北出发后8分钟追上小江
9、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )
A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系
B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系
C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系
D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系
10、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )
A.①②④ B.①②③ C.①③④ D.②③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=___________________,△APE的面积等于6.
2、函数中,自变量x的取值范围是________.
3、如图,在 Rt△ABC中,∠ACB=90°,BC=4cm,AC=9cm,点 D在线段 CA上从点C出发向点A方向运动(点 D不与点 A,点C重合),且点D运动的速度为2cm/s,现设运动时间为 x(0<x<)秒时,对应的 △ABD 的面积为ycm²,则当x=2 时,y=_________ ;y与x之间满足的关系式为_________.
4、在数学综合实践课中,小明和同学对类似八下教科书25页例2的问题进行拓展探索:
如图1,一根长为5米的木棍斜靠在一竖直的墙上,为4米,如果木棍的顶端沿墙下滑米,底端向外移动米,下滑后的木棍记为,则与满足的等式,即关于的函数解析式为,小明利用画图软件画出了该函数图象如图2,
(1)请写出图象上点的坐标(1,______)
(2)根据图象,当的取值范围为______时,的周长大于的周长.
5、在一条笔直的公路上依次有A、B、C三地,A、B两地相距210千米.甲、乙两车分别从A、B两地同时出发匀速前往C地,乙到达C地后先休息30分钟,再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.甲、乙两车之间的距离y(千米)与甲车出发的时间x(小时)之间的函数关系如图所示,则下列五个说法:①a=210;②乙车从C地返回B地的速度为90km/h;③甲出发8小时后到达C地;④A、C两地的距离为540km;⑤甲车出发小时后与乙车相遇.其中正确的有_____.
三、解答题(5小题,每小题10分,共计50分)
1、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离与行驶时间之间的关系如下图所示.
(1)______,______.
(2)请你求出甲车离出发地郑州的距离与行驶时间之间的函数关系式.
(3)求出点的坐标,并说明此点的实际意义.
(4)直接写出甲车出发多长时间两车相距40千米.
2、图中的折线表示一骑车人离家的距离y与时间x的关系.骑车人9:00离开家,15:00回家.请你根据这个折线图回答下列问题:
(1)这个人何时离家最远?这时他家多远?
(2)何时他开始第一次休息?休息多长时间?这时他离家多远?
(3)11:00~12:30他骑了多少千米?
(4)他在9:00~10:30和10:30~12:30的平均速度各是多少?
(5)他返家时的平均速度是多少?
(6)14:00时他离家多远?何时他距家?
3、有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)列表:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
﹣0.5
0
0.2
1.8
2
2.5
3
4
n
6
7
…
y
…
﹣1
m
﹣1.5
﹣2
﹣3
﹣4
﹣6
﹣7.5
7.5
6
4
3
2
1.5
1.2
1
…
求出表中m的值为 ,n的值为 .
描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;
(3)观察发现:结合函数的图象,写出该函数的两条性质:① ;② .
4、公交公司员工小明住在站点的员工宿舍,每天早上去站点上班,站到站唯一一条公交线路示意图如图1,、、、是四个公交站点,其中、两站相距的路程是1200米,为了健身,小明往往沿公交线路步行到站或站后再乘公交车上班.
(1)星期一,小明步行到站上车,记他距站的路程为米,离开站的时间为分,关于的函数图象如图2,求的解析式及公交车的速度;
(2)星期二,小明以与星期一相同出发时间和步行速度步行到站上车,已知公交车无论上行(→)还是下行(→)都每隔10分钟一班,每天始发时间和行车速度保持不变,乘客上下车时间忽略不计;
①通过计算判断小明步行到达站时是否恰好有上行公交车到达站;
②小明到达站所用时间是星期一的1.5倍,求、两站相距的路程;
③若小明步行至站时刚好遇见一辆下行班车,这一趟上班途中,直接写出他遇到下行班车的最短间隔时间.
5、A,B两地相距60km,甲乙两人沿同一条路从A地前往B地,甲先出发.图中l1,l2表示甲乙两人离A地的距离y(km)与乙所用时间x(h)之间的关系,请结合图象回答下列问题:
(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是 (填l1或l2);
(2)当其中一人到达B地时,另一人距B地 km;
(3)乙出发多长时间时,甲乙两人刚好相距10km?
-参考答案-
一、单选题
1、D
【解析】
【分析】
由函数图象可得:阴影部分的最大面积为:3, 再利用面积公式求解 再利用勾股定理求解 从而可得答案.
【详解】
解:由函数图象可得:阴影部分的最大面积为:3,
,且,
解得: (负根舍去)
所以的周长为:
故选D
【点睛】
本题考查的是从函数图象中获取信息,等腰直角三角形的性质,勾股定理的应用,二次根式的化简与加减运算,灵活应用以上知识解题是关键.
2、A
【解析】
【分析】
根据“在一个变化过程中,如果有两个变量x、y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数”,由此可排除选项.
【详解】
解:选项A符合函数的概念,
而B、C、D都不符合“对于x的每一个确定的值,y都有唯一确定的值与其对应”,
故选A.
【点睛】
本题主要考查函数的定义,熟练掌握函数的定义是解题的关键.
3、B
【解析】
【分析】
先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.
【详解】
解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,
故选项A正确;
设小南t小时追上小开,
50(2+1+0.5+t)=100t,
解得t=3.5,
∴100×3.5=350千米,
故选项B不正确;
50(2+1+0.5+t+0.5)=100t,
解得t=4,
∴小南到达景区时共用2+1+0.5+4=7.5小时,
故选项C正确;
∵100×4=400千米,
∴家距离景区共400千米,
故选项D正确.
故选B.
【点睛】
本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.
4、A
【解析】
【分析】
输入,则有;输入,则有,将代数式的值代入求解即可.
【详解】
解:输入,则有;
输入,则有;
故选A.
【点睛】
本题考查了程序流程图与代数式求值.解题的关键在于正确求解代数式的值.
5、C
【解析】
【分析】
由题意知,求解即可.
【详解】
解:由题意知
∴
故选C.
【点睛】
本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.
6、B
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.
【详解】
解:∵函数y=,
∴,解得:x>﹣3.
故选:B.
【点睛】
本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.
7、B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【详解】
解:根据题意得,x-2≥0且x−3≠0,
解得且.
故选:B.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
8、C
【解析】
【分析】
观察图象,可得:表示的是小北步行的情况,表示的是小江步行的情况,可得A错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C正确;设小北出发后 分钟追上小江,则 ,解出可得D错误,即可求解.
【详解】
解:根据题意得:
A、因为小江先出发一段时间后小北再出发,所以表示的是小北步行的情况,表示的是小江步行的情况,故本选项不符合题意;
B、小江的速度是米/分钟,小北的速度是米/分钟,故本选项不符合题意;
C、观察图象,得:小江比小北先出发 分钟,故本选项符合题意;
D、设小北出发后 分钟追上小江,则 ,解得: ,即小北出发后16分钟追上小江,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.
9、D
【解析】
【分析】
根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可
【详解】
解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;
B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;
C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;
D、∵一个正数x的平方根是y,
∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;
故选D.
【点睛】
本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.
10、A
【解析】
【分析】
由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.
【详解】
解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;
②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;
③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;
④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;
所以正确的是①②④.
故选:A.
【点睛】
本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.
二、填空题
1、1.5或5或9
【解析】
【分析】
分为两种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.
【详解】
如图1,当点P在AC上.
∵中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,
∴CE=4,AP=2t.
∵的面积等于6,
∴=AP•CE=AP×4=6.
∵AP=3,
∴t=1.5.
如图2,当点P在BC上.则t>3
∵E是DC的中点,
∴BE=CE=4.
∴=EP•AC=EP×6=6,
∴PE=2,
∴t=5或t=9.
总上所述,当t=1.5或5或9时,的面积会等于6.
故答案为:1.5或5或9.
【点睛】
本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.
2、x≥0
【解析】
【分析】
根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.
【详解】
∵有意义,
∴x≥0.
故答案为:x≥0
【点睛】
本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.
3、
【解析】
【分析】
根据,代入数轴求解即可.
【详解】
解:根据题意得:
=
=
=,
∴当x=2 时,,
故答案为:,.
【点睛】
本题考查了动点问题的函数关系,根据题意得出解析式是关系.
4、
【解析】
【分析】
(1)把的横坐标代入,求解点的纵坐标即可;
(2)先分别求解的周长,的周长,可得:当的周长的周长时,即,再画出直线的图象,直线过点、,观察函数图象可得答案.
【详解】
解:(1)当时,,
故点的坐标为,
故答案为1;
(2)由,得:,
由题意得:,,
则的周长,
而的周长,
则当的周长的周长时,
即,
由(1)知,当时,,当时,,
则在原图象的基础上,画出直线的图象如下,直线过点、,
从图象看,当时,,即的周长大于的周长,
故答案为:.
【点睛】
本题考查的是动态问题的函数图象,二次根式的化简,理解图象上点的横坐标与纵坐标的含义,利用两个函数图象的交点坐标解决有关不等关系问题是解题的关键.
5、①⑤
【解析】
【分析】
根据A、B两地相距210千米得出a的值;根据乙到达C地后先休息30分钟时再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.可求出甲车的速度;从而得出乙车的速度;求出A、C两地的距离可得甲到达C地的时间;根据x=3.5时甲、乙两车的距离以及速度可判断④.
【详解】
解:∵A、B两地相距210千米.
∴a=210,①正确;
由图象得:乙到达C地后先休息30分钟,
即3.5小时时,甲距C地360千米,
再以原速的返回到B地,甲到达C地立即停止.
可知回时所用的时间为:小时,
当乙返回到B地1.5小时后,甲到达C地.
可知甲在3.5小时时开始运动,经过小时到达C地,
故甲车的速度为:,
则3小时时,两车的距离为:,
设乙车的速度为,则,
解得:,
∴乙车从C地返回B地的速度为:120×=80(千米/小时),②错误;
B、C两地的距离为:120×3=360(千米),
∴A、C两地的距离为:360+210=570(千米),④错误;
∴570÷60=(小时),即甲出发小时后到达C地,③错误;
∵x=3.5时,甲、乙两车之间的距离是360千米,
∴360÷(80+60)=(小时),即再行驶小时两车相遇,
+3.5=(小时),即甲车出发小时后与乙车相遇.⑤正确.
∴其中正确的有①⑤.
故答案为:①⑤.
【点睛】
本题考查了函数图象信息读取,准确读出图象含义是解题的关键.
三、解答题
1、 (1)8,6.5
(2)
(3)点P的坐标为(5,360),点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米
(4)当甲车出发2.4小时或2.8小时或小时两车相距40千米
【解析】
【分析】
(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m;然后算出乙车从西安到郑州需要的时间即可求出n;
(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;
(3)根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可;
(4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可.
(1)
解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止,
∴直线的函数图像是乙车的,折线的函数图像是甲车的,
由函数图像可知,甲车4小时从郑州行驶到西安走了480千米,
∴甲车的速度=480÷4=120千米/小时,
∴甲车从西安返回郑州需要的时间=480÷120=4小时,
∴m=4+4=8;
∵乙车的速度为80千米/小时,
∴乙车从西安到达郑州需要的时间=480÷80=6小时,
∵由函数图像可知乙车是在甲车出发0.5小时后出发,
∴n=0.5+6=6.5,
故答案为:8,6.5;
(2)
解:当甲车从郑州去西安时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
当甲车从西安返回郑州时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
∴;
(3)
解:根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,
∵此时甲车处在返程途中,
∴,
解得,
∴,
∴点P的坐标为(5,360),
∴点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;
(4)
解:当甲车在去西安的途中,甲乙两车相遇前,
由题意得:,
解得;
当甲车在去西安的途中,甲乙两车相遇后,
由题意得:,
解得;
当甲车在返回郑州的途中,乙未到郑州时,
由题意得:
解得(不符合题意,舍去),
当甲车在返回郑州的途中,乙已经到郑州时,
由题意得:
解得;
综上所述,当甲车出发2.4小时或2.8小时或小时两车相距40千米.
【点睛】
本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键.
2、(1)12:30~13:30,;(2)10:30,,;(3);(4),;(5);(6),14:30
【解析】
【分析】
(1)直接观察图象,即可求解;
(2)直接观察图象,即可求解;
(3)用12:30时对应的距离减去11:00对应的距离,即可求解;
(4)根据平均速度等于该时间段的路程除以时间,即可求解;
(5)根据平均速度等于该时间段的路程除以时间,即可求解;
(6)可先求出14:00到15:00的1小时内的平均速度,可得他距家时,从14:00所骑的路程,即可求解.
【详解】
解:(1)由图可知,这个人12:30-13:30时,离家最远,这时他离家45km;
(2)由图可知,10:30时他开始第一次休息,从10:30到11:00,共休息了0.5h,这时他离家30km;
(3)11:00~12:30他骑了45-30=15km;
(4)他在9:00-10:30的1.5小时内的平均速度为:
30÷1.5=20km/h,
10:30~12:30的2小时内的平均速度为:(45-30)÷2=7.5km/h;
(5)由图象可得:他返家时间为从13:30到15:00,共1.5h,
45÷1.5=30km/h,
即他返家时的平均速度是30km/h;
(6)由图可知,14:00时他离家18km
14:00到15:00的1小时内的平均速度为:
18÷1=18km/h,
(18-9)÷18=0.5h,
即回家路上,14:30时他离家9km.
【点睛】
本题主要考查了函数图象的意义,能准确从函数图象获取信息是解题的关键.
3、(1)x≠1;(2)2,5,图象见解析;(3)①图象是中心对称图形,对称中心的坐标是(1,0);②当x>1时,y随x的增大而减小(答案不唯一).
【解析】
【分析】
(1)根据分母不为0即可得出关于x的不等式,解之即可求解;
(2)将x=4代入函数解析式即可求出m的值,将y=1.5代入函数解析式即可求出n的值;然后用平滑曲线连线即可画出函数图象;
(3)观察函数图象,从增减性及对称性得出结论即可.
【详解】
(1)由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1;
(2)当x=4时,m=,
当y=1.5时,则1.5=,解得n=5,
描点、连线画出函数图象如图,
故答案为:2,5;
(3)观察函数图象发现:
①该图象是中心对称图形,对称中心的坐标是(1,0),
②当x>1时,y随x的增大而减小.
答案不唯一.
【点睛】
本题考查了反比例函数图象上点的坐标特征,函数自变量取值范围及反比例函数的性质,解题关键是理解题意,学会利用图象法解决问题.
4、(1) 公交车的速度为:米分;(2)①小明步行到达站时恰好有上行公交车到达站;②、两站相距的路程是6600米;③分钟
【解析】
【分析】
(1)由图象上点可得小明步行的速度,从而可得函数解析式;由点的含义可得公交车的速度;
(2)①先计算小明步行到达站需要分,再计算上行公交车到达站需要分,而,从而可得小明步行到达站时恰好有上行公交车到达站;②设小明星期一所用时间为,星期二到达站所用时间为,可得,,再利用列方程,再解方程即可得到答案;③由每隔10分钟一班,每辆公交车相距米,而步行的速度小于坐车时的速度,可得最短时间间隔发生在坐车时,从而可得答案.
【详解】
解:(1)由图象可知,小明步行的速度为(米分),
的解析式为,
公交车的速度为(米分);
(2)①小明步行到达站需要(分,
上行公交车到达站需要(分,
,
小明步行到达站时恰好有上行公交车到达站;
②设小明星期一所用时间为,星期二到达站所用时间为,
由题可知,,
小明到达站所用时间是星期一的1.5倍,
,
解得,
、两站相距的路程是6600米;
③每隔10分钟一班,
每辆公交车相距(米,
步行的速度小于坐车时的速度,
最短时间间隔发生在坐车时,
间隔时间为(分钟).
【点睛】
本题考查的是从函数图象中获取信息,列函数关系式,一元一次方程的应用,理解题意与理解函数图象上点的坐标含义是解题的关键.
5、(1);(2)10;(3)乙出发1小时或3小时时,甲乙两人刚好相距10km
【解析】
【分析】
(1)根据甲比乙先出发,则当乙出发时,甲离A地已经有一段的距离,即在函数图像上表现为当时,,由此求解即可;
(2)先求出甲的速度为10千米/小时,乙的速度为20千米/小时,即可求出乙到达B地需要的时间=60÷20=3小时,则此时甲所走的距离=20+10×3=50千米,由此即可得到答案;
(3)分乙追上甲前和乙追上甲后两种情况讨论求解即可.
【详解】
解:(1)∵甲比乙先出发,
∴当乙出发时,甲离A地已经有一段的距离,即在函数图像上表现为当时,,
∴表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是,
故答案为:;
(2)由函数图像可知,乙两小时行驶了40千米,甲2小时行驶了20千米,
∴甲的速度为10千米/小时,乙的速度为20千米/小时,
∴乙到底B地需要的时间=60÷20=3小时,
∴此时甲所走的距离=20+10×3=50千米,
∴此时甲距离B地的距离=60-50=10千米,
故答案为:10;
(3)设乙出发t小时时,甲乙两人刚好相距10km,
当乙未追上甲时:,
解得,
当乙追上甲后:,
解得,
∴乙出发1小时或3小时时,甲乙两人刚好相距10km.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试测试题,共23页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。
这是一份2020-2021学年第二十章 函数综合与测试练习,共23页。试卷主要包含了函数的图象如下图所示,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
这是一份数学第二十章 函数综合与测试练习题,共23页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。