初中数学冀教版八年级下册第二十章 函数综合与测试习题
展开冀教版八年级数学下册第二十章函数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
2、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
3、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是( )
A.甲的速度是 B.乙的速度是
C.甲乙同时到达地 D.甲出发两小时后两人第一次相遇
4、油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )
A.Q=0.3t B.t=60-0.3Q C.t=0.3Q D.Q=60-0.3t
5、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:
①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
6、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )
A.4个 B.3个 C.2个 D.1个
7、在函数中,自变量x的取值范围是( )
A. B. C. D.
8、函数y=中,自变量x的取值范围是( )
A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3
9、下列各自线中表示y是x的函数的是( )
A. B.C.D.
10、下列各曲线中,不表示y是x的函数的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿着的方向以2cm/s的速度匀速运动到终点.图2是点运动时,的面积随时间变化的全过程图象,则的长度为______cm.
2、设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为__________,这个关系式中, __________是常量,__________是变量,__________是__________的函数.
3、已知函数f(x)=+x,则f()=_____.
4、甲、乙两车从A地出发,匀速驶向B地.甲车以的速度行驶1小时后,乙车才沿相同路线行驶乙车先到达B地并停留1小时后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离与乙车行驶时间之间的函数关系如图所示下列说法:①乙车的速度是;②;③点H的坐标是;④.其中错误的是_______.(只填序号)
5、已知y=2x2﹣3x+1,当x=1时,函数值为____.
三、解答题(5小题,每小题10分,共计50分)
1、小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程(米)和所用时间(分钟)的关系图如图所示,请结合图中信息解答下列问题:
(1)小明家和学校的距离是 米;小明在广场向行人讲解卫生防疫常识所用的时间是 分钟;
(2)分别求小华的速度和小明从广场跑去学校的速度;
(3)求小华在广场看到小明时是几点几分?
(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)
2、甲乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过200元后,超出200元的部分按85%收费,在乙商店累计超过100元后,超出部分按照90%收费.
(1)若你准备用80元去购物,你会怎样选择商场来购物?若你准备用160元去购物,选择到哪家商场购物花费少?(直接回答)
(2)设你购物花费x(x>200)元,实际花费为y元.分别写出在甲、乙两个商场购物时,y与x的函数关系式;
(3)在(2)的情况下,请根据两家商场的优惠活动方案,讨论到哪家商场购物花费少?说明理由.
3、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函教,并写出表示函数与自变量关系的式子.
4、如图所示,在△ABC中,∠C=90°,AC=6,BC=10,设P为BC上任一点,点P不与点B、C重合,且CP=.若表示△APB的面积.
(1)求与之间的函数关系式;
(2)求自变量的取值范围.
5、在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的函数.画出这些函数的图象:
(1);
(2).
-参考答案-
一、单选题
1、B
【解析】
【分析】
由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
【详解】
解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
乙车行驶280千米需要的时间为:小时,
所以甲车返回的速度为:千米/时,故②符合题意;
由小时,所以 故③符合题意,
当乙车行驶2小时时,行驶的路程为:千米,
此时甲车行驶1小时,千米,
所以两车相距:千米,
当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
距离A地千米,所以两车相距千米,故④不符合题意;
综上:故选B
【点睛】
本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
2、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
3、A
【解析】
【分析】
根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.
【详解】
解:由图象可得,
甲的速度是,故选项符合题意;
乙的速度为:,故选项不符合题意;
甲先到达地,故选项不符合题意;
甲出发小时后两人第一次相遇,故选项不符合题意;
故选:A.
【点睛】
本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.
4、D
【解析】
【分析】
根据油箱中剩余油量=总存油量-流出的油量,列出函数关系式即可.
【详解】
解:根据题意:
油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是:,
故选:D.
【点睛】
本题考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.
5、B
【解析】
【分析】
根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.
【详解】
解:乙从B地到A共行走24km,故①A、B两地相距正确;
乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,
∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;
甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,
∴48-40=8km/h,
故③甲车的速度比乙车慢正确;
设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,
∴40t+48t=24,
解得h,
故④两车出发后,经过0.3小时,两车相遇不正确.
故选择B.
【点睛】
本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.
6、A
【解析】
【分析】
由图象所给信息对结论判断即可.
【详解】
由图象可知当x=0时,甲、乙两人在A、B两地还未出发
故A,B之间的距离为1200m
故①正确
前12min为甲、乙的速度和行走了1200m
故
由图象可知乙用了24-4=20min走完了1200m
则
则
故②正确
又∵两人相遇时停留了4min
∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地
则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米
则b=800
故③正确
从24min开始为甲独自行走1200-800=400m
则t=min
故a=24+10=34
故④正确
综上所述①②③④均正确,共有四个结论正确.
故选:A.
【点睛】
本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.
7、C
【解析】
【分析】
由题意知,求解即可.
【详解】
解:由题意知
∴
故选C.
【点睛】
本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.
8、B
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.
【详解】
解:∵函数y=,
∴,解得:x>﹣3.
故选:B.
【点睛】
本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.
9、C
【解析】
【分析】
根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)逐项判断即可得.
【详解】
解:A、一个的值对应两个或三个的值,则此项不符题意;
B、一个的值对应一个或两个的值,则此项不符题意;
C、任意一个都有唯一确定的一个和它对应,则此项符合题意;
D、一个的值对应一个或两个的值,则此项不符题意;
故选:C.
【点睛】
本题考查了函数,掌握理解函数的概念是解题关键.
10、D
【解析】
【分析】
根据函数的意义进行判断即可.
【详解】
解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.
故选:D.
【点睛】
本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.
二、填空题
1、2
【解析】
【分析】
点P在点D时,设正方形的边长为a,a×a=18,解得a=6;当点P在点C时,×EP×6=12,解得EP=4,即EC=4,进而即可求解.
【详解】
解:当点P在点D时,由图象可知三角形APE的面积为18,设正方形的边长为a,y=AB×AD=a×a=18,解得a=6;
当点P在点C时,由图象可知三角形APE的面积为12,y=EP×AB=×EP×6=12,解得EP=4,即EC=4,
∴BE=6-4=2,
故答案是:2.
【点睛】
本题考查的是动点函数图象问题,此类问题关键是弄清楚不同时间段,图象和图形的对应关系.
2、 s=60t 60 t和s s t
【解析】
略
3、
【解析】
【分析】
根据题意直接把x=代入解析式进行计算即可求得答案.
【详解】
解:∵函数f(x)=+x,
∴f()=+=2,
故答案为:2.
【点睛】
本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式.
4、④
【解析】
【分析】
根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
【详解】
解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2-6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
故答案为:④.
【点睛】
本题考查函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
5、0
【解析】
【分析】
根据函数值的求法,直接将x=1代入函数关系式得出即可.
【详解】
解:y=2x2-3x+1,
当x=1时,y=2×12-3×1+1=0.
故答案为:0.
【点睛】
此题主要考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题关键.
三、解答题
1、(1)1280,6;(2)小华的速度为米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次
【解析】
【分析】
(1)根据函数图象,找出小明家和学校的距离是1280米,计算出小明在广场向行人讲解卫生防疫常识所用的时间即可;
(2)根据速度=路程÷时间,分别求小华的速度和小明从广场跑去学校的速度;
(3)根据函数图象可得当小华离家路程,根据速度=路程÷时间,算出用的时间,加上出分时间,由此解答即可;
(4)根据函数图象可得,小明之前的速度,讲解时间,由此推断即可.
【详解】
(1)解:由图象可知,小明家和学校的距离是1280米;
小明在广场向行人讲解卫生防疫常识所用的时间是: (分钟);
故答案为:1280;6;
(2)解:小华的速度为:(米/分钟),
小明从广场跑去学校的速度为:(米/分钟);
(3)解:(分钟),(分钟),
答:小华在广场看到小明时是7:51;
(4)解:(分钟),
(分钟),
因为,
所以,在保证不迟到的情况下,小明最多可以讲解1次.
【点睛】
本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.
2、(1)准备用80元去购物,选择两个商场都一样;当准备用160元去购物,选择到乙商场购物花费少;(2)在甲商场购物:y=0.85x+30,在乙商场购物:y=0.9x+10;(3)当购物超过200元却少于400元时,到乙商场购物花费少;当购物400元时,到甲、乙两家商场购物花费一样;当购物超过400元时,到甲商场购物花费少.
【解析】
【分析】
(1)由于准备用80元去购物,没有达到甲、乙商场优惠标准,因此选择两个商场的结果一样;然后计算出买160元的东西分别在甲、乙两商场的花费,然后得出在乙商场更少;
(2)根据甲、乙的优方案进行解答;
(3)根据(2)中表示出在甲乙两商场的花费列出的不等式,分情况讨论,求出最合适的消费方案.
【详解】
解:(1)∵准备用80元去购物,没有达到甲乙两种方案的优惠标准,
∴选择两个商场的结果一样;
在甲商场购买160元的东西需要花费:160(元),
在乙商场购买160元的东西需要花费:100+60×0.90=154(元),
∵160>154,
∴去乙商场花费少;
答:准备用80元去购物,选择两个商场都一样;当准备用160元去购物,选择到乙商场购物花费少;
(2)由题意得:在甲商场购物:y=200+(x﹣200)×85%=0.85x+30,
在乙商场购物:y=100+(x﹣100)×90%=0.9x+10;
(3)①若在甲商场花费少,则0.85x+30<0.9x+10,
解得x>400,
所以当购物超过400元时,到甲商场购物花费少;
②若在乙商场花费少,则0.85x+30>0.9x+10,
解得x<400,
所以当购物超过200元却少于400元时,到乙商场购物花费少;
③若到两家商场花费一样多时,则0.85x+30=0.9x+10,
解得x=400,
所以当购物400元时,到甲、乙两家商场购物花费一样.
答:当购物超过200元却少于400元时,到乙商场购物花费少;当购物400元时,到甲、乙两家商场购物花费一样;当购物超过400元时,到甲商场购物花费少.
【点睛】
本题主要考查了一元一次不等式的实际应用,求函数关系式,解题的关键在于能够根据题意得到相应的关系式进行求解.
3、常量0.2,变量x,y,自变量x,函数y,.
【解析】
【分析】
根据总价=单价×数量,可得函数关系式.再根据函数的有关定义解答即可.
【详解】
解:由题意得:(x是正整数),y是x的函数,
∴常量0.2,变量x,y,自变量x,函数y.
【点睛】
主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
4、(1);(2)0<<10
【解析】
【分析】
(1)由图形可知△APB边BP上的高为AC,利用三角形的面积公式表示出y即可得到y与x之间的函数关系式.
(2)结合点P的运动轨迹即可求出x的范围
【详解】
解:(1)∵BC=10,CP=x,
∴PB=10−x,
∴S△APB=×PB•AC=×(10−x)×6=30−3x;
(2)∵P点在BC上不与B、C重合,BC=10,
∴0<x<10.
【点睛】
本题考查了函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
5、(1)见解析;(2)见解析
【解析】
【分析】
直接利用描点法画出函数图象,即可求解.
【详解】
解:(1)从式子可以看出,x取任意实数时这个式子都有意义,所以x的取值范围是全体实数.
从x的取值范围中选取一些数值,算出y的对应值,列表(计算并填写表中空格).
x | … | 0 | 1 | 2 | … | |
y | … | 0.5 | 1.5 | 2.5 | … |
根据表中数值描点,并用平滑曲线连接这些点(如图).
(2).
列表
x | … | 1 | 2 | 3 | 4 | … |
y | … | 6 | 3 | 2 | 1.5 | … |
根据表中数值描点,并用平滑曲线连接这些点(如图).
【点睛】
本题主要考查了描点法画函数图象,熟练掌握描点法画函数图象的基本步骤——列表、描点、连线是解题的关键.
八年级下册第二十章 函数综合与测试精练: 这是一份八年级下册第二十章 函数综合与测试精练,共19页。
2020-2021学年第二十章 函数综合与测试同步达标检测题: 这是一份2020-2021学年第二十章 函数综合与测试同步达标检测题,共25页。试卷主要包含了函数中,自变量x的取值范围是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
冀教版八年级下册第二十章 函数综合与测试课堂检测: 这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共23页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。