2020-2021学年第二十章 函数综合与测试精练
展开
这是一份2020-2021学年第二十章 函数综合与测试精练,共21页。试卷主要包含了小明家,函数y=的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各表达式不是表示y是x的函数的是( )A. B.C. D.2、下面分别给出了变量x与y之间的对应关系,其中y是x函数的是( )A. B.C. D.3、下列各自线中表示y是x的函数的是( )A. B.C.D.4、周六早上,小王和小李相约晨跑,他们约定从各自的家出发,在位于同一直线上的公园大门见面,小王先出发,途中等了1分钟红绿灯,然后以之前的速度继续向公园大门前行,小李比小王晚1分钟出发,结果比小王早1分钟到达,两人均匀速行走.下图是两人距离公园的路程与小王行走的时间之间的函数关系图象,若点A的坐标是,则下列说法中,错误的是( )A.点A代表的实际意义是小李与小王相遇 B.当小李出发时,小王与小李相距120米C.小李家距离公园大门的路程是560米 D.小李每分钟比小王多走20米5、小明家、公园、图书馆依次在一条直线上,周末,小明和妈妈准备去公园放风筝,但是因为小明要先去图书馆还书,所以他们同时从家出发,并约定2小时后在公园碰头.小明先骑自行车匀速前往图书馆,到达图书馆还书后按原路原速返回公园并按照约定时间准时到达公园,妈妈则匀速步行前往公园,结果迟到半小时.如图是他们离家的距离y(km)与小明离家时间x(h)的函数图象,下列说法中错误的是( )A.小明骑车的速度是20km/hB.小明还书用了18minC.妈妈步行的速度为2.4km/hD.公园距离小明家8km6、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系7、下列曲线中,表示y是x的函数的是( )A. B.C. D.8、函数y=的自变量x的取值范围是( )A.x≠0 B.x≠1 C.x≠±1 D.全体实数9、下列各曲线中,不表示y是x的函数的是( )A. B.C. D.10、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在函数y=中,自变量x的取值范围是 _____.2、已知函数,那么_________.3、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;4、已知函数f(x)=+x,则f()=_____.5、如图1,在△ABC中,AB>AC,D是边BC上的动点.设B,D两点之间的距离为x,A,D两点之间的距离为y, 表示 y与x的函数关系的图象如图2所示.线段AC的长为_________________,线段AB的长为____________.三、解答题(5小题,每小题10分,共计50分)1、我们可以通过列表、描点、连线等步骤作出所学函数的图象,另外,我们也学过绝对值的定义,结合上面的学习经历,解决下面的问题;已知函数,当时,;当时,.(1)求这个函数的解析式;(2)求出表中的值:_______,_______.结合以下表格,在坐标系中画出该函数的图象,观察函数图象,写出该函数的一条性质:___________________________.…012……50305…(3)若关于的方程有4个不同实数根,请根据函数图象,直接写出的取值范围.2、长方形的一边长是,其邻边长为,周长是,面积为.(1)写出和之间的关系式(2)写出和之间的关系式(3)当时,等于多少等于多少(4)当增加时,增加多少增加多少3、图(a)是某公共汽车线路收支差额(票价总收入减去运营成本)与乘客量的函数图象;目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,从而实现扭亏.公交公司认为:运营成本难以下降,公司已尽力,提高票价才能担亏根据这两种意见,可以把图(a)分别改画成图(b)和图(c).(1)说明图(a)中点和点的实际意义.(2)你认为图(b)和图(c)两个图象中,反映乘客意见的是______,反映公交公司意见的是______.4、 “漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下页哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)5、如图所示,在△ABC中,∠C=90°,AC=6,BC=10,设P为BC上任一点,点P不与点B、C重合,且CP=.若表示△APB的面积.(1)求与之间的函数关系式;(2)求自变量的取值范围. -参考答案-一、单选题1、C【解析】略2、D【解析】【分析】函数的意义反映在图象上简单的判断方法是:做垂直轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:根据函数的意义可知:对于自变量的任何值,都有唯一的值与之相对应,所以D正确.故选:D.【点睛】本题主要考查了函数图象的读图能力,解题的关键是要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3、C【解析】【分析】根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)逐项判断即可得.【详解】解:A、一个的值对应两个或三个的值,则此项不符题意;B、一个的值对应一个或两个的值,则此项不符题意;C、任意一个都有唯一确定的一个和它对应,则此项符合题意;D、一个的值对应一个或两个的值,则此项不符题意;故选:C.【点睛】本题考查了函数,掌握理解函数的概念是解题关键.4、C【解析】【分析】根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,可判断A选项;根据小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,路程为420米,可得小王的速度,小李到目的地用时6分钟,从A点到终点用时1.5分钟,路程为120米,可得小李的速度,然后根据路程、速度、时间的关系可得小李家离公园大门的路程,判断C选项;由两人的速度可判断D选项;最后依据两人的行走过程判断B选项即可.【详解】解:根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,故A选项正确;由题意,小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,小王的速度为:(米/分);小李到目的地用时:(分钟),从A点到终点用时:(分钟),路程为120米,∴小李的速度为:(米/分);总路程为:(米),∴小李家离公园大门的路程为480米,故C选项错误;,小李每分钟比小王多走20米,故D选项正确;当小李出发时,小王已经出发1分钟,走过的路程为:(米),剩余路程为:(米),小李距离目的地路程为480(米),两人相距:(米),故B选项正确;综合可得:C选项错误,A、B、D正确,故选:C.【点睛】题目主要考查根据实际行走函数图象获取信息,利用速度、时间、路程的关系结合图象求解是解题关键.5、D【解析】【分析】根据小明1小时到达图书馆,图书馆距离家20千米,求出小明骑车的速度判断A选项;根据小明还书用了0.3小时判断B选项;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2列出方程求出方程的解来判断C选项;根据妈妈的速度×妈妈所用的时间求公园距离小明家的距离来判断D选项.【详解】解:观察图象可知,小明1小时到达图书馆,图书馆距离家20千米,小明骑车的速度是20千米/小时,故A选项不符合题意;1.3﹣1=0.3(小时)=18(分),故B选项不符合题意;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2得:2.5a+20×(2﹣1.7)=20×2,解得a=2.4,故C选项不符合题意;2.4×2.5=6(千米),故D选项符合题意;故选:D.【点睛】本题考查了函数的图象,求出妈妈的速度是解题的关键.6、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.7、C【解析】【分析】根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;B、对于的每一个取值,可能有两个值与之对应,不符合题意;C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;D、对于的每一个取值,可能有两个值与之对应,不符合题意;故选:【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.8、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.9、D【解析】【分析】根据函数的意义进行判断即可.【详解】解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.故选:D.【点睛】本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.10、B【解析】【分析】根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;【详解】由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;当8≤x≤12时,点P在CB上运动,△APD的面积y=8;当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;故选B.【点睛】本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.二、填空题1、x≠【解析】【分析】根据分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得:3x−4≠0,解得:x≠,故答案为:x≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握分式分母不为0是解题的关键.2、【解析】【分析】根据函数的定义即可得.【详解】解:因为,所以,故答案为:.【点睛】本题考查了求函数值,掌握理解函数的概念是解题关键.3、V=100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V与h的关系为V=100h;故答案为:V=100h.【点睛】本题主要考查了列函数关系式,题目比较简单.4、【解析】【分析】根据题意直接把x=代入解析式进行计算即可求得答案.【详解】解:∵函数f(x)=+x,∴f()=+=2,故答案为:2.【点睛】本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式.5、 【解析】【分析】从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,进而求解.【详解】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,,则,在Rt△ABH中,,故答案为:,.【点睛】本题考查的是动点问题的函数图象,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.三、解答题1、(1);(2)4,3,函数的对称轴为(答案不唯一);(3).【解析】【分析】(1)当时,;当时,,则,解得,即可求解;(2)当时,,同理可得,根据表格数据,通过描点、连线绘制函数图象,即可求解;(3)观察函数图象,当时,和有4个交点,即可求解.【详解】解:(1)当时,;当时,,则,解得,故函数的表达式为;(2)当时,,同理可得,根据表格数据,通过描点、连线绘制函数图象如下:从图象看,函数的对称轴为(答案不唯一);故答案为:4,3,函数的对称轴为(答案不唯一);(3)观察函数图象知,当时,和有4个交点,即关于的方程有4个不同实数根.【点睛】本题考查的是抛物线与轴的交点,解题的关键是在求出函数表达式的基础上,画出函数图象,通过数形结合来解答.2、(1);(2);(3),;(4)当增加时,增加,增加【解析】【分析】(1)根据长方形周长公式进行求解即可;(2)根据长方形面积公式进行求解即可;(3)根据(2)求得的结果把代入先求出x的值,即可求值y的值;(4)把代入(1)(2)中求得的y以及S关于x的表达式中求出变化后的周长和面积,由此求解即可.【详解】解:(1)由长方形的周长公式,得.(2)由长方形的面积公式,得.(3)∵,时,∴,∴.(4)当增加时,,,∵,∴增加,增加.【点睛】本题主要考查了列代数式,整式的加减计算,代数式求值,解一元一次方程,解题的关键在于能够根据题意列出关于周长和面积的代数式.3、(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).【解析】【分析】(1)读题看图两结合,从中获取信息做出判断.点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)根据题意知图象反映了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的成本情况,再结合图象进行说明.【详解】解:(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).由图(b)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持成本不变,由图(c)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是降低成本而保持票价不变;综上可得图(b)的建议是提高票价,图(c)的建议是降低成本,故反映乘客意见的是图(c),反映公交公司意见的是图(b).【点睛】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,解题关键是掌握读图能力和数形结合思想.4、图(2)【解析】【分析】根据题意,可知y随x的增大而减小,符合一次函数图象,从而可以解答本题.【详解】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而匀速的减小,符合一次函数图象,∴图象(2)适合表示y与x的对应关系.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.5、(1);(2)0<<10【解析】【分析】(1)由图形可知△APB边BP上的高为AC,利用三角形的面积公式表示出y即可得到y与x之间的函数关系式.(2)结合点P的运动轨迹即可求出x的范围【详解】解:(1)∵BC=10,CP=x,∴PB=10−x,∴S△APB=×PB•AC=×(10−x)×6=30−3x;(2)∵P点在BC上不与B、C重合,BC=10,∴0<x<10.【点睛】本题考查了函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
相关试卷
这是一份2020-2021学年第二十章 函数综合与测试同步达标检测题,共25页。试卷主要包含了函数中,自变量x的取值范围是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共29页。试卷主要包含了如图,点A的坐标为等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测,共25页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。