终身会员
搜索
    上传资料 赚现金

    2021-2022学年冀教版八年级数学下册第二十章函数课时练习试卷(含答案详解)

    立即下载
    加入资料篮
    2021-2022学年冀教版八年级数学下册第二十章函数课时练习试卷(含答案详解)第1页
    2021-2022学年冀教版八年级数学下册第二十章函数课时练习试卷(含答案详解)第2页
    2021-2022学年冀教版八年级数学下册第二十章函数课时练习试卷(含答案详解)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学冀教版第二十章 函数综合与测试课后作业题

    展开

    这是一份数学冀教版第二十章 函数综合与测试课后作业题,共23页。


    冀教版八年级数学下册第二十章函数课时练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是(        )

    A.100 m/min,266m/min B.62.5m/min,500m/min

    C.62.5m/min,437.5m/min D.100m/min,500m/min

    2、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中正确的是(  )

    ①两人前行过程中的速度为200米/分;

    m的值是15,n的值是3000;

    ③东东开始返回时与爸爸相距1500米;

    ④运动18分钟或30分钟时,两人相距900米.

    A.①② B.①②③ C.①②④ D.①②③④

    3、变量有如下关系:①;②;③;④.其中的函数的是(      

    A.①②③④ B.①②③ C.①② D.①

    4、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是(  )

    A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系

    B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系

    C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系

    D.一个正数x的平方根是yy随着这个数x的变化而变化,yx之间的关系

    5、甲、乙两人骑车分别从AB两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min 再以原速返回A地,当两人到达A地后停止骑行.设甲出发x min后距离A地的路程为y km.图中的折线表示甲在整个骑行过程中yx的函数关系.在整个骑行过程中,两人只相遇了1次,乙的骑行速度(单位:km/min)可能是(  

    A.0.1 B.0.15 C.0.2 D.0.25

    6、如图1,在矩形ABCD中,ABBCACBD交于点O.点E为线段AC上的一个动点,连接DEBE,过EEFBDF.设AEx,图1中某条线段的长为y,若表示yx的函数关系的图象大致如图2所示,则这条线段可能是图1中的(       ).

    A.线段EF B.线段DE C.线段CE D.线段BE

    7、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是(  )

    A.甲的速度是 B.乙的速度是

    C.甲乙同时到达 D.甲出发两小时后两人第一次相遇

    8、下列各自线中表示yx的函数的是(      

    A. B.C.D.

    9、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是(      

    v(m/s)

    25

    15

    5

    ﹣5

    t(s)

    0

    1

    2

    3

    A.v=25t B.v=﹣10t+25 C.vt2+25 D.v=5t+10

    10、一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是(  )

    A.前3h中汽车的速度越来越快 B.3h后汽车静止不动

    C.3h后汽车以相同的速度行驶 D.前3h汽车以相同速度行驶

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、定义:用_______来表示函数关系的方法叫做解析式法.

    特点:解析式法简单明了,能够准确的反映整个变化过程中自变量与函数之间的对应关系,但有些实际问题中的函数关系,不能用解析式表示,如气温与时间的函数关系.

    2、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是_______.

    3、小亮从学校步行回家,图中的折线反映了小亮离家的距离S(米)与时间t(分钟)的函数关系,根据图象提供的信息,给出以下结论:①他在前12分钟的平均速度是70米/分钟;②他在第19分钟到家;③他在第15分钟离家的距离和第24分钟离家的距离相等;④他在第33分钟离家的距离是720米.其中正确的序号为 ___.

    4、国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程(米)与出发的时间(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点__________米.

    5、已知函数y,那么自变量x的取值范围是_________.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,PQ是△ABC边上的两个动点,其中点P从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.

    (1)当t=2秒时,求PQ的长;

    (2)求运动时间为几秒时,△PQC是等腰三角形?

    (3)PQ在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.

    2、在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)

    所挂物体质量x/kg

    0

    1

    2

    3

    4

    5

    6

    弹簧长度y/cm

    12

    12.5

    13

    13.5

    14

    14.5

    15

    (1)有下列说法:①xy都是变量,且x是自变量,yx的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是     (填序号)

    (2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.

    (3)预测当所挂物体质量为10kg时,弹簧长度是多少?

    (4)当弹簧长度为20cm时,求所挂物体的质量.

    3、下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数的解析式.

    (1)改变正方形的边长x,正方形的面积S随之改变.

    (2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化.

    (3)秀水村的耕地面积是,这个村人均占有耕地面积y(单位;)随这个村人数n的变化而变化.

    (4)水池中有水,此后每小时漏水,水池中的水量V(单位:L)随时间t(单位:h)的变化而变化.

    4、甲、乙两车从城出发沿一条笔直公路匀速行驶至城,在整个行驶过程中,甲、乙两车离开城的距离与甲车行驶的时间之间的函数关系如图所示.

    (1)两城相距_____千米,乙车比甲车早到______小时;

    (2)求出点坐标;

    (3)两车都在行驶的过程中,当甲、乙两车相距40千米时,_____.

    5、在国内投寄平信应付邮资如表:

    信件质量x(克)

    0<x≤20

    20<x≤40

    40<x≤60

    邮资y(元/封)

    1.20

    2.40

    3.60

    (1)根据函数的定义,y是关于x的函数吗?

    (2)结合表格解答:

    ①求出当x=48时的函数值,并说明实际意义.

    ②当寄一封信件的邮资是2.40元时,信件的质量大约是多少克?

     

    -参考答案-

    一、单选题

    1、D

    【解析】

    【分析】

    根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.

    【详解】

    解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;

    公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.

    故选:D.

    【点睛】

    本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.

    2、D

    【解析】

    【分析】

    根据题意和图象中的数据可以判断各个小题中的说法是否正确,从而可以解答本题.

    【详解】

    解:由图可得,

    两人前行过程中的速度为4000÷20=200(米/分),故①正确;

    m的值是20−5=15,n的值是200×15=3000,故②正确;

    爸爸返回时的速度为:3000÷(45−15)=100(米/分),

    则东东开始返回时与爸爸相距:4000−3000+100×5=1500(米),故③正确;

    运动18分钟时两人相距:200×(18−15)+100×(18−15)=900(米),

    东东返回时的速度为:4000÷(45−20)=160(米/分),

    则运动30分钟时,两人相距:1500−(160−100)×(30−20)=900米,故④正确,

    ∴结论中正确的是①②③④.

    故选:D.

    【点睛】

    本题考查了从函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.

    3、B

    【解析】

    【分析】

    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.

    【详解】

    解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数;

    满足对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数;

    满足对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数;

    ,当时,,则y不是x的函数;

    综上,函数的有①②③.

    故选:B.

    【点睛】

    本题主要考查了函数的定义.在一个变化过程中,有两个变量xy,对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数.

    4、D

    【解析】

    【分析】

    根据函数的定义:在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,yx的函数,由此进行逐一判断即可

    【详解】

    解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;

    B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;

    C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;

    D、∵一个正数x的平方根是y

    ,对于每一个确定的xy都有两个值与之对应,不满足函数的关系,故符合题意;

    故选D.

    【点睛】

    本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.

    5、D

    【解析】

    【分析】

    由函数图象可求出甲、乙骑行的时间,根据题意和路程÷时间=速度可求出乙的最小速度即可求解.

    【详解】

    解:由函数图象知,AB两地的距离为25km,甲往返的时间为50+50+20=120(min),

    ∵两人到达A地后停止骑行,且在整个骑行过程中,两人只相遇了1次,

    ∴乙的骑行的速度至少为25÷120= (km/min),

    >0.2,<0.25,

    ∴乙的骑行速度可能是0.25km/min,

    故选:D.

    【点睛】

    本题考查一次函数的应用,理解题意,准确从图象中获取有效信息是解答的关键.

    6、B

    【解析】

    【分析】

    根据各个选项中假设的线段,可以分别由图象得到相应的yx的变化的趋势,从而可以判断哪个选项是正确的.

    【详解】

    解:A、由图1可知,若线段EFy,则yx的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;

    B、由图1可知,若线段DEy,则yx的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DCDADC,故此选项符合题意;

    C、由图1可知,若线段CEy,则yx的增大越来越小,故此选项不符合题意;

    D、由图1可知,若线段BEy,则yx的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BCBABC,故此选项不符合题意;

    故选B.

    【点睛】

    本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.

    7、A

    【解析】

    【分析】

    根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.

    【详解】

    解:由图象可得,

    甲的速度是,故选项符合题意;

    乙的速度为:,故选项不符合题意;

    甲先到达地,故选项不符合题意;

    甲出发小时后两人第一次相遇,故选项不符合题意;

    故选:A.

    【点睛】

    本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.

    8、C

    【解析】

    【分析】

    根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,的函数)逐项判断即可得.

    【详解】

    解:A、一个的值对应两个或三个的值,则此项不符题意;

    B、一个的值对应一个或两个的值,则此项不符题意;

    C、任意一个都有唯一确定的一个和它对应,则此项符合题意;

    D、一个的值对应一个或两个的值,则此项不符题意;

    故选:C.

    【点睛】

    本题考查了函数,掌握理解函数的概念是解题关键.

    9、B

    【解析】

    【分析】

    根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.

    【详解】

    解:A、当时,,不满足,故此选项不符合题意;

    B、当时,,满足

    时,,满足

    时,,满足

    时,,满足,故此选项符合题意;

    C、当时,,不满足,故此选项符合题意;

    D、当时,,不满足,故此选项符合题意;

    故选B.

    【点睛】

    本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.

    10、B

    【解析】

    【分析】

    根据图象可直接进行排除选项.

    【详解】

    解:由图象可知前3小时汽车行驶的路程是曲线,并且路程是缓慢增加,故汽车的速度是越来越小,

    在3小时到5小时之间,汽车的路程没有发生改变,故可知汽车在此期间是静止不动的,

    由上述可知,只有B选项正确;

    故选B.

    【点睛】

    本题主要考查函数图象,解题的关键是根据函数图象得到相关信息.

    二、填空题

    1、解析式

    【解析】

    2、单价

    【解析】

    【分析】

    根据常量与变量的定义即可判断.

    【详解】

    解:常量是固定不变的量,变量是变化的量,

    单价6.48是不变的量,而金额是随着数量的变化而变化,

    ∴常量是:单价.

    故答案为:单价.

    【点睛】

    本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.

    3、①④

    【解析】

    【分析】

    由图象可以直接得出前12分钟小亮的平均速度,从而得出①正确;由图象可知从12分到19分小亮又返回学校,可以判断②错误;分别求出小亮第15分和第24分离家距离可以判断③错误;求出小亮33分离家距离,可以判断④正确.

    【详解】

    解:由图象知,前12分中的平均速度为:(1800−960)÷12=70(米/分),

    故①正确;

    由图象知,小亮第19分中又返回学校,

    故②错误;

    小亮在返回学校时的速度为:(1800−960)÷(19−12)=840÷7=120(米/分),

    ∴第15分离家距离:960+(15−12)×120=1320,

    从21分到41分小亮的速度为:1800÷(41−21)=1800÷20=90(米/分),

    ∴第24分离家距离:1800−(24−21)×90=1800−270=1530(米),

    ∵1320≠1530,

    故③错误;

    小亮在33分离家距离:1800−(33−21)×90=1800−1080=720(米),

    故④正确,

    故答案为:①④.

    【点睛】

    本题考查函数图像,关键是利用已知信息和图象所给的数据分析题意,依次解答.

    4、204.

    【解析】

    【分析】

    设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,利用70秒相距70米,得出v1=v2+1,利用小一500秒到终点,求出v2,,再求出小一到终点时,小艾距终点的路程,利用两者相向而行510米所用时间即可

    【详解】

    解:∵70秒时,两人相距70米,然后小艾休息,小一追上,说明小艾速度快,

    设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,

    ∴70v1-70v2=70,

    v1=v2+1,

    小一欢骑自行车到乐谷,用500秒,小一的速度为2000÷500=4米/秒,

    ∴小艾的速度为5米/秒,

    小艾在路旁休息了4分钟后再次出发,以1.2×5=6米/秒的速度冲向终点,

    2000-70×5-[500-(70+4×60)]×6=2000-350-1140=510米,

    当小一到终点时,小艾距终点510米,小一返回与小艾相遇时间为:510÷(4+6)=51秒,

    此时距终点51×4=204米.

    故答案为204.

    【点睛】

    本题考查利用函数图像获取信息,掌握图像的这点含义是解题关键.

    5、

    【解析】

    【分析】

    根据二次根式有意义的条件列出不等式,解不等式得到答案.

    【详解】

    解:由题意得,

    解得,

    故答案为:

    【点睛】

    本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.

    三、解答题

    1、(1)PQ5cm;(2)t;(3)SAPQB=30﹣5t+t2

    【解析】

    【分析】

    (1)先分别求出CQCP的长,再根据勾股定理解得即可;

    (2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;

    (3)由SAPQBSACBSPCQ进行求解即可.

    【详解】

    解:(1)由题意得,APtPC=5﹣tCQ=2t

    ∵∠C=90°,

    PQ

    t=2,

    PQ

    (2)∵∠C=90°,

    ∴当CPCQ时,△PCQ是等腰三角形,

    ∴5﹣t=2t

    解得:t

    t秒时,△PCQ是等腰三角形;

    (3)由题意得:SAPQBSACBSPCQ

    =30﹣5t+t2

    【点睛】

    本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.

    2、 (1)③④;

    (2)y=0.5x+12(0≤x≤18);

    (3)弹簧长度是17cm;

    (4)所挂物体的质量为16kg.

    【解析】

    【分析】

    (1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度,可得答案;

    (2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式;

    (3)令x=10时,求出y的值即可;

    (4)令y=20时,求出x的值即可.

    (1)

    解: xy都是变量,且x是自变量,yx的函数,故①正确;

    x=6时,y=15,当x=0时,y=12,15-12=3,故②正确,③错误;

    在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm,但是当超出弹性限度后,弹簧长度就不再增加,故④错误;

    故答案为:③④;

    (2)

    解:弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式为y=0.5x+12,

    ∵在弹性限度内该弹簧悬挂物体后的最大长度为21cm.

    ∴0.5x+12≤21,解得:x≤18,

    y=0.5x+12(0≤x≤18);

    (3)

    解:当x=10kg时,代入y=0.5x+12,

    解得y=17cm,

    即弹簧长度是17cm;

    (4)

    y=20cm时,代入y=0.5x+12,

    解得x=16,

    即所挂物体的质量为16kg.

    【点睛】

    本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.

    3、(1)自变量x,函数S

    (2)自变量x,函数y

    (3)自变量n,函数y

    (4)自变量t,函数V

    【解析】

    【分析】

    (1)正方形的边长x为自变量,面积S随之改变,则面积S为边长x的函数;

    (2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化,则注水量y(单位:)是注水时间x(单位:)的函数;

    (3)这个村人数为n,人均占有耕地面积y(单位;)随这个村人数n的变化而变化,则人均占有耕地面积y(单位;)是村人数n的函数;

    (4)时间为t(单位:h),水池中的水量V(单位:L)随时间t(单位:h)的变化而变化,则水池中的水量V(单位:L)是时间t(单位:h)的函数.

    【详解】

    解:(1)自变量x,函数S

    (2)自变量x,函数y

    (3)自变量n,函数y

    (4)自变量t,函数V

    【点睛】

    本题考查变量与函数,理解函数的定义,准确确定自变量与函数是解题关键.

    4、 (1)300千米,1小时

    (2)

    (3)

    【解析】

    【分析】

    (1)根据图象,即可求解;

    (2)根据图象,可得乙车在点追上甲车,再求出两车的速度,然后设甲车出发小时后,乙车追上甲车,可得,解出即可求解;

    (3)分两种情况讨论,即可求解.

    (1)

    解:由图象可得,

    两城相距300千米,乙车比甲车早到(小时);

    (2)

    解:由图象可得,乙车在点追上甲车,

    甲车的速度为(千米/时),乙车的速度为(千米/时),

    设甲车出发小时后,乙车追上甲车,

    解得

    (千米),

    ∴点

    (3)

    解:根据题意得:当乙车没有追上甲车前,甲、乙两车相距40千米时,

    解得:

    当乙车超过甲车后,甲、乙两车相距40千米时,

    解得:

    综上所述,当甲、乙两车相距40千米时,

    【点睛】

    本题主要考查了函数图象,从函数图象获取准确信息,并利用数形结合思想解答是解题的关键.

    5、(1)yx的函数;(2)①3.60,实际意义见解析;②大于20克,且不超过40克

    【解析】

    【分析】

    (1)根据函数的定义判断即可.

    (2)①②利用表格求出对应的函数值即可.

    【详解】

    解:(1)yx的函数,

    理由是:对于x的一个值,函数y有唯一的值和它对应;

    (2)①当x=48时,y=3.60,

    实际意义:信件质量为48克时,邮资为3.60元;

    ②邮资为2.40元,信件质量大约为大于20克,且不超过40克.

    【点睛】

    本题考查了函数的概念,解题的关键是理解题意,灵活运用所学知识解决问题.

     

    相关试卷

    初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题:

    这是一份初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题,共26页。试卷主要包含了小明家等内容,欢迎下载使用。

    2020-2021学年第二十章 函数综合与测试课时作业:

    这是一份2020-2021学年第二十章 函数综合与测试课时作业,共22页。试卷主要包含了函数y=的自变量x的取值范围是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十章 函数综合与测试课后复习题:

    这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后复习题,共25页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map