初中数学冀教版八年级下册第二十章 函数综合与测试一课一练
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试一课一练,共24页。
冀教版八年级数学下册第二十章函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )A. B. C. D.2、今年暑假期间,小东外出爬山.他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟 70米C.小明在上述过程中所走的路程为3800米D.小明休息前爬山的平均速度小于休息后爬山的平均速度3、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是( )A.表示的是小江步行的情况,表示的是小北步行的情况B.小江的速度是45米/分钟,小北的速度是60米/分钟C.小江比小北先出发16分钟.D.小北出发后8分钟追上小江4、在函数y=中,自变量x的取值范围是 ( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠45、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).A.线段EF B.线段DE C.线段CE D.线段BE6、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.…………小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;②时,函数有最小值,最小值为;③时,函数的值随点的增大而减小.其中正确的是( )A.①② B.①③ C.②③ D.①②③7、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个8、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有( )个A.1 B.2 C.3 D.49、下列各曲线中,不表示y是x的函数的是( )A. B.C. D.10、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y=中自变量x的取值范围是______.2、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿着的方向以2cm/s的速度匀速运动到终点.图2是点运动时,的面积随时间变化的全过程图象,则的长度为______cm.3、已知y=2x2﹣3x+1,当x=1时,函数值为____.4、定义:用_______来表示函数关系的方法叫做解析式法.特点:解析式法简单明了,能够准确的反映整个变化过程中自变量与函数之间的对应关系,但有些实际问题中的函数关系,不能用解析式表示,如气温与时间的函数关系.5、在数学综合实践课中,小明和同学对类似八下教科书25页例2的问题进行拓展探索:如图1,一根长为5米的木棍斜靠在一竖直的墙上,为4米,如果木棍的顶端沿墙下滑米,底端向外移动米,下滑后的木棍记为,则与满足的等式,即关于的函数解析式为,小明利用画图软件画出了该函数图象如图2,(1)请写出图象上点的坐标(1,______)(2)根据图象,当的取值范围为______时,的周长大于的周长.三、解答题(5小题,每小题10分,共计50分)1、长方形的一边长是,其邻边长为,周长是,面积为.(1)写出和之间的关系式(2)写出和之间的关系式(3)当时,等于多少等于多少(4)当增加时,增加多少增加多少2、如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明从菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?3、下列各题中分别有几个变量?你能将其中某个变量看成另一个变量的函数吗?若能,请指出自变量的取值范围.(1)(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行,一般地有经验公式,其中表示刹车前汽车的速度(单位:).(3)在国内投寄到外埠质量为以内的普通信函应付邮资如下表:信件质量邮资/元1.202.403.604.806.00 4、下列各曲线中哪些表示y是x的函数?5、在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的函数.画出这些函数的图象:(1);(2). -参考答案-一、单选题1、D【解析】【分析】利用x=-1时,求函数值进行一一检验是否为1即可【详解】解: 当x=-1时,,图象不过点,选项A不合题意;当x=-1时,,图象不过点,选项B不合题意;当x=-1时,,图象不过点,选项C不合题意;当x=-1时,,图象过点,选项D合题意;故选择:D.【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.2、D【解析】【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.【详解】解:A、小明中途休息用了60−40=20分钟,正确,不符合题意;B、小明休息前爬山的速度为2800÷40=70(米/分钟),正确,不符合题意;C、小明在上述过程中所走的路程为3800米,正确,不符合题意;D、小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,错误,符合题意;故选:D.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.3、C【解析】【分析】观察图象,可得:表示的是小北步行的情况,表示的是小江步行的情况,可得A错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C正确;设小北出发后 分钟追上小江,则 ,解出可得D错误,即可求解.【详解】解:根据题意得:A、因为小江先出发一段时间后小北再出发,所以表示的是小北步行的情况,表示的是小江步行的情况,故本选项不符合题意;B、小江的速度是米/分钟,小北的速度是米/分钟,故本选项不符合题意;C、观察图象,得:小江比小北先出发 分钟,故本选项符合题意;D、设小北出发后 分钟追上小江,则 ,解得: ,即小北出发后16分钟追上小江,故本选项不符合题意;故选:C【点睛】本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.4、D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:∵x-3≥0,∴x≥3,∵x-4≠0,∴x≠4,综上,x≥3且x≠4,故选:D.【点睛】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6、C【解析】【分析】(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】把,代入 得:,画出函数图像如图所示:当时,;当时,,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.7、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.8、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t分钟追上甲,,解得t=7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.9、D【解析】【分析】根据函数的意义进行判断即可.【详解】解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.故选:D.【点睛】本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.10、A【解析】【分析】先作出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中, ∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.二、填空题1、x1且x-3【解析】【分析】根据分母不为0,被开方数大于等于0,进行计算即可.【详解】解:由题意得:1-x0,且x+30,∴x1且x-3,2、2【解析】【分析】点P在点D时,设正方形的边长为a,a×a=18,解得a=6;当点P在点C时,×EP×6=12,解得EP=4,即EC=4,进而即可求解.【详解】解:当点P在点D时,由图象可知三角形APE的面积为18,设正方形的边长为a,y=AB×AD=a×a=18,解得a=6;当点P在点C时,由图象可知三角形APE的面积为12,y=EP×AB=×EP×6=12,解得EP=4,即EC=4,∴BE=6-4=2,故答案是:2.【点睛】本题考查的是动点函数图象问题,此类问题关键是弄清楚不同时间段,图象和图形的对应关系.3、0【解析】【分析】根据函数值的求法,直接将x=1代入函数关系式得出即可.【详解】解:y=2x2-3x+1,当x=1时,y=2×12-3×1+1=0.故答案为:0.【点睛】此题主要考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题关键.4、解析式【解析】略5、 【解析】【分析】(1)把的横坐标代入,求解点的纵坐标即可;(2)先分别求解的周长,的周长,可得:当的周长的周长时,即,再画出直线的图象,直线过点、,观察函数图象可得答案.【详解】解:(1)当时,,故点的坐标为,故答案为1;(2)由,得:,由题意得:,,则的周长,而的周长,则当的周长的周长时,即,由(1)知,当时,,当时,,则在原图象的基础上,画出直线的图象如下,直线过点、,从图象看,当时,,即的周长大于的周长,故答案为:.【点睛】本题考查的是动态问题的函数图象,二次根式的化简,理解图象上点的横坐标与纵坐标的含义,利用两个函数图象的交点坐标解决有关不等关系问题是解题的关键.三、解答题1、(1);(2);(3),;(4)当增加时,增加,增加【解析】【分析】(1)根据长方形周长公式进行求解即可;(2)根据长方形面积公式进行求解即可;(3)根据(2)求得的结果把代入先求出x的值,即可求值y的值;(4)把代入(1)(2)中求得的y以及S关于x的表达式中求出变化后的周长和面积,由此求解即可.【详解】解:(1)由长方形的周长公式,得.(2)由长方形的面积公式,得.(3)∵,时,∴,∴.(4)当增加时,,,∵,∴增加,增加.【点睛】本题主要考查了列代数式,整式的加减计算,代数式求值,解一元一次方程,解题的关键在于能够根据题意列出关于周长和面积的代数式.2、(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了10分钟;(2)0.9千米,12分钟;(3)18分钟;(4)2千米,4.8千米/小时【解析】【分析】观察函数图象得到小明用15分钟从家去菜地,浇水用了10分钟,又去离家2千米的玉米地,锄草用了18分钟,然后用了25分钟回家.【详解】解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地 2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷=4.8(千米/小时).【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.3、(1)(2)(3)都含有两个变量;(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;(2)可将看成的函数,的取值范围是:;(3)可将看成的函数,的取值范围是:【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案,结合图像分析出自变量的取值范围即可;【详解】(1)(2)(3)都含有两个变量;(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;(2)可将看成的函数,的取值范围是:;(3)可将看成的函数,的取值范围是:【点睛】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、图(1)(2)(3)中y是x的函数【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可得出结论.【详解】解:图(1)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数; 图(2)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数; 图(3)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;图(4)对于一部分自变量x的值,y有两个值与之相对应, y不是x的函数;故图(1)(2)(3)中y是x的函数【点睛】本题主要考查了函数概念,关键是掌握注意对函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.5、(1)见解析;(2)见解析【解析】【分析】直接利用描点法画出函数图象,即可求解.【详解】解:(1)从式子可以看出,x取任意实数时这个式子都有意义,所以x的取值范围是全体实数.从x的取值范围中选取一些数值,算出y的对应值,列表(计算并填写表中空格).x…012…y…0.51.52.5… 根据表中数值描点,并用平滑曲线连接这些点(如图).(2).列表x…1234…y…6321.5… 根据表中数值描点,并用平滑曲线连接这些点(如图).【点睛】本题主要考查了描点法画函数图象,熟练掌握描点法画函数图象的基本步骤——列表、描点、连线是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试一课一练,共23页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
这是一份初中数学第二十章 函数综合与测试复习练习题,共22页。试卷主要包含了函数中,自变量x的取值范围是,当时,函数的值是等内容,欢迎下载使用。
这是一份八年级下册第二十章 函数综合与测试课后测评,共19页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。