冀教版八年级下册第二十章 函数综合与测试习题
展开这是一份冀教版八年级下册第二十章 函数综合与测试习题,共21页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列曲线中,表示y是x的函数的是( )
A.B.
C.D.
2、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是( )
A.甲的速度是B.乙的速度是
C.甲乙同时到达地D.甲出发两小时后两人第一次相遇
3、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )
A.1个B.2个C.3个D.4个
4、变量x与y之间的关系是,当时,自变量x的值是( )
A.13B.5C.2D.3
5、变量,有如下关系:①;②;③;④.其中是的函数的是( )
A.①②③④B.①②③C.①②D.①
6、一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是( )
A.前3h中汽车的速度越来越快B.3h后汽车静止不动
C.3h后汽车以相同的速度行驶D.前3h汽车以相同速度行驶
7、下列曲线中,表示y是x的函数的是( )
A.B.
C.D.
8、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )
A.B.
C.D.
9、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D→A作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )
A.B.
C.D.
10、习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为( )
A.1.1,8B.0.9,3C.1.1,12D.0.9,8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中表示时间,表示小强离家的距离.图象提供的信息,有以下四个说法:①体育场离小强家千米;②在体育场锻炼了分钟;③体育场离早餐店千米;④小强从早餐店回家的平均速度是千米/小时.其中正确的说法为_____ (只需填正确的序号).
2、周末,小明骑车从家前往公园,中途休息了一段时间.他从家出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.对于下列说法:①小明中途休息了2分钟;②小明休息前的骑车速度为每分钟400米;③小明所走的路程为4400米;④小明休息前的骑车速度小于休息后的骑车速度.其中正确结论的序号是____.
3、已知函数,那么_________.
4、长方形的周长为20,则面积y与一条边长x之间的函数关系式是___.
5、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是__________,y是x的__________.
如果当x=a时,y=b,那么b叫做当自变量的值为a时的__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.
根据图象回答下列问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时间?
(2)小明吃早餐用了多少时间?
(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?
(4)小明读报用了多少时间?
(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?
2、如图,在等边△ABC中,BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为xcm,CE为ycm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
补全表格上相关数值.
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为 cm.
3、如果,如;;……那么________.
4、小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围.
5、假设圆锥的高是6cm,当圆锥的底面半径由小到大变化时,圆锥的体积随着底面半径而变化,(圆锥的体积公式:V=πr2h,其中r表示底面半径,h表示圆锥的高)
(1)在这个变化过程中,自变量是______________,因变量是_____________.
(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r(cm)的关系式为_________.
(3)当r由1cm变化到10cm时,V由__________cm3变化到__________cm3.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据函数的定义进行判断即可.
【详解】
解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,
故选:C.
【点睛】
本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.
2、A
【解析】
【分析】
根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.
【详解】
解:由图象可得,
甲的速度是,故选项符合题意;
乙的速度为:,故选项不符合题意;
甲先到达地,故选项不符合题意;
甲出发小时后两人第一次相遇,故选项不符合题意;
故选:A.
【点睛】
本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.
3、B
【解析】
【分析】
根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.
【详解】
解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;
乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;
根据函数图像可知乙比甲迟出发0.5小时,故③正确,
根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;
故选B.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
4、C
【解析】
【分析】
直接把y=5代入y=2x+1,解方程即可.
【详解】
解:当y=5时,5=2x+1,
解得:x=2,
故选:C.
【点睛】
本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.
5、B
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.
【详解】
解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
④,当时,,则y不是x的函数;
综上,是函数的有①②③.
故选:B.
【点睛】
本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.
6、B
【解析】
【分析】
根据图象可直接进行排除选项.
【详解】
解:由图象可知前3小时汽车行驶的路程是曲线,并且路程是缓慢增加,故汽车的速度是越来越小,
在3小时到5小时之间,汽车的路程没有发生改变,故可知汽车在此期间是静止不动的,
由上述可知,只有B选项正确;
故选B.
【点睛】
本题主要考查函数图象,解题的关键是根据函数图象得到相关信息.
7、C
【解析】
【分析】
根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.
【详解】
解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;
B、对于的每一个取值,可能有两个值与之对应,不符合题意;
C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;
D、对于的每一个取值,可能有两个值与之对应,不符合题意;
故选:
【点睛】
本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.
8、D
【解析】
【分析】
根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.
【详解】
解:由题意可得,
当时,,
∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,
∴托运费y与物品重量x之间的函数图像为:
故选:D.
【点睛】
此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.
9、B
【解析】
【分析】
运用动点函数进行分段分析,当P在BC上,P在CD上以及P在AD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.
【详解】
解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×BP=×2x=x;
因为从点C到点D,△ABP的面积一定:2×1÷2=1,
所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);
点P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×AP=×2×(4﹣x)=﹣x+4.
所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:
故选:B.
【点睛】
本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.
10、D
【解析】
【分析】
直接根据函数图像进行解答即可.
【详解】
解:此函数大致可分以下几个阶段:
①0﹣15分种,小强从家走到菜地;
②15﹣25分钟,小强在菜地浇水;
③25﹣37分钟,小强从菜地走到玉米地;
④37﹣55分钟,小强在玉米地除草;
⑤55﹣80分钟,小强从玉米地回到家;
综合上面的分析得:由③的过程知,a=2﹣1.1=0.9千米;
由②、④的过程知b=(55﹣37)﹣(25﹣15)=8分钟;
故选:D.
【点睛】
本题考查了从函数图像中提取信息,读懂题意,理解函数图像的含义是解本题的关键.
二、填空题
1、①②
【解析】
【分析】
根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.
【详解】
解:①由纵坐标看出,体育场离张强家2.5千米,故①正确;
②由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故②正确;
③由纵坐标看出,2.5-1.5=1千米,体育场离早餐店1千米,故③错误;
④由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了100-65=35分钟=小时,(千米/小时),故④错误;
故答案为①②.
【点睛】
本题考查了函数图象,观察函数图象获得有效信息是解题关键.
2、①②##②①
【解析】
【分析】
根据函数图象可知,小明4分钟所走的路程为1600米,分钟休息,分钟骑车米,骑车的总路程为2800米,根据路程、速度、时间的关系进行解答即可.
【详解】
解:①、根据图象可知,在4~6分钟,路程没有发生变化,所以小明中途休息的时间为:6﹣4=2分钟,故正确;
②、根据图象可知,当t=4时,s=1600,所以小明休息前骑车的平均速度为:1600÷4=400(米/分钟),故正确;
③、根据图象可知,小明在上述过程中所走的路程为2800米,故错误;
④、小明休息后的骑车的平均速度为:(2800﹣1600)÷(10﹣6)=300(米/分),小明休息前骑车的平均速度为:1600÷4=400(米/分钟),
400>300,所以小明休息前骑车的平均速度大于休息后骑车的平均速度,故错误;
综上所述,正确的有①②.
故答案为①②.
【点睛】
本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进而解决问题.
3、
【解析】
【分析】
根据函数的定义即可得.
【详解】
解:因为,
所以,
故答案为:.
【点睛】
本题考查了求函数值,掌握理解函数的概念是解题关键.
4、
【解析】
【详解】
解:∵长方形的周长为20,一条边为x,
∴长方形的另一条边为,
∴ .
故答案为:.
【点睛】
本题主要考查了列函数关系式,解题的关键在于能够熟练掌握长方形周长公式和面积公式.
5、 自变量 函数 函数值
【解析】
略
三、解答题
1、(1),;(2);(3),;(4);(5),
【解析】
【分析】
小明离家的距离y是时间x的函数,由图象中有两段平行于x轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里,由此结合图形分析即可解答.
【详解】
解:(1)由纵坐标看出,食堂离小明家;由横坐标看出,小明从家到食堂用了.
(2)由横坐标看出,,小明吃早餐用了.
(3)由纵坐标看出,,食堂离图书馆;
由横坐标看出,,小明从食堂到图书馆用了.
(4)由横坐标看出,,小明读报用了.
(5)由纵坐标看出,图书馆离小明家;
由横坐标看出,,小明从图书馆回家用了,
由此算出平均速度是.
【点睛】
本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.
2、(1)0;(2)见详解;(3)1.7
【解析】
【分析】
(1)由题意认真按题目要求测量BD、CE,进行填表即可;
(2)根据题意按照表格描点作图即可;
(3)由题意线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
【详解】
解:(1)根据题意测量约0,
故答案为:0;
(2)根据题意画图:
(3)当线段BD是线段CE长的2倍时,得到y=x图象,该图象与(2)中图象的交点即为所求情况,测量得BD长约1.7cm.
故答案为:1.7.
【点睛】
本题考查函数作图和学生函数图象实际意义的理解,同时考查学生由数量关系得到函数关系的转化思想.
3、####
【解析】
【分析】
由,计算得到,观察得到,由此将原式化简计算即可.
【详解】
解:∵
∴
∴
∴
=
=
故答案为:
【点睛】
本题考查函数的概念,牢记知识点并灵活应用是解题关键.
4、
【解析】
【分析】
由等腰三角形的周长=腰长×2+底长,可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).
【详解】
解:由题意得,=80,
所以,y=80-2x,
由于三角形两边之和大于第三边,且边长大于0,
所以,
解得,
所以.
【点睛】
本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.
5、(1)圆锥的底面半径,圆锥的体积;(2)V=2πr2;(3)2π;200π.
【解析】
【分析】
(1)圆锥的体积随着底面半径的变化而变化,于是圆锥的底面半径为自变量,圆锥的体积为因变量;
(2)由圆锥的体积公式:V=π•r2•h,h=6,可得函数关系式;
(3)根据函数关系式,求出当r=1cm和r=10cm时的体积V即可.
【详解】
解:(1)由于圆锥的体积随之底面半径的变化而变化,因此圆锥的底面半径为自变量,圆锥的体积为因变量,
故答案为:圆锥的底面半径,圆锥的体积;
(2)当h=6时,由圆锥的体积公式:V=π•r2•h可得,
由圆锥的体积公式:V=π•r2•h可得,
V=2πr2,
故答案为:V=2πr2;
(3)当r=1cm时,V=2π(cm3),
当r=10cm时,V=2π×102=200π(cm3),
故答案为:2π,200π.
【点睛】
本题考查变量之间的关系,函数关系式,理解函数的意义,掌握圆锥的体积的计算方法是正确解答的前提.
x/cm
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
y/cm
5.0
3.3
2.0
1.1
0.4
0.3
0.4
0.3
0.2
0
相关试卷
这是一份初中冀教版第二十章 函数综合与测试同步测试题,共23页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共25页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共22页。