![难点详解冀教版八年级数学下册第二十章函数综合练习练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12765165/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十章函数综合练习练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12765165/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十章函数综合练习练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12765165/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十章 函数综合与测试课堂检测
展开
这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共26页。
冀教版八年级数学下册第二十章函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,自变量的取值范围选取错误的是( )A.y=2x2中,x取全体实数 B.y=中,x取x≠-1的实数C.y=中,x取x≥2的实数 D.y=中,x取x≥-3的实数2、如图1,在菱形ABCD中,AB=6,∠BAD=120°,点E是BC边上的一动点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H(a,b)是图象上的最低点,则a+b的值为( )A. B. C. D.363、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )A.800元 B.600元 C.1200元 D.1000元4、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米5、函数y=中,自变量x的取值范围是( )A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣36、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)7、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米C.小南到达景区时共用时7.5小时 D.家距离景区共400千米8、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了、两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )A.消耗1升汽油,车最多可行驶5千米B.车以40千米小时的速度行驶1小时,最少消耗4升汽油C.对于车而言,行驶速度越快越省油D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油9、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④10、甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个变化过程中,数值发生变化的量为_____.在一个变化过程中,数值始终不变的量为_____.在同一个变化过程中,理解变量与常量的关键词:发生_____和始终不变.2、用函数观点解决实际问题:(1)搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;(2)分清______和______,并注意自变量的______.3、设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为__________,这个关系式中, __________是常量,__________是变量,__________是__________的函数.4、已知函数f(x)=,f(2)=___.5、函数中,自变量x的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;(3)当APB为等腰三角形时,请直接写出AE的值.2、图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度随着碗的数量变化而变化的情况如表格所示:碗的数量(只)12345…高度(cm)45.26.47.68.8…(1)用h(cm)表示这碗的高度,用x(只)表示这摞碗的数量,请结合表格直接写出h(cm)与x(只)之间的函数关系式.(2)若这摞碗的高度为11.2cm,求这摞碗的数量.3、(1)画出函数的图象.(2)设是x轴上的一个动点,它与x轴上表示的点的距离为y.求y关于x的函数解析式,并画出这个函数的图象.4、下列各题中分别有几个变量?你能将其中某个变量看成另一个变量的函数吗?若能,请指出自变量的取值范围.(1)(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行,一般地有经验公式,其中表示刹车前汽车的速度(单位:).(3)在国内投寄到外埠质量为以内的普通信函应付邮资如下表:信件质量邮资/元1.202.403.604.806.00 5、小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围. -参考答案-一、单选题1、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得.【详解】解:A、中,取全体实数,此项正确;B、,即,中,取的实数,此项正确;C、,,中,取的实数,此项正确;D、,且,,中,取的实数,此项错误;故选:D.【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.2、A【解析】【分析】从图2知,是的最小值,从图1作辅助线知;接下来求出,设与交于点,则求出,,最后得,所以,选.【详解】解:如下图,在边上取点,使得和关于对称,连接,得,连接,作,垂足为,由三角形三边关系和垂线段最短知,,即有最小值,菱形中,,,在△中,,解得,是图象上的最低点,此时令与交于点,由于,在△中,,又,,又的长度为,图2中是图象上的最低点,,又,,故选:A.【点睛】本题考查动点及最小值问题,解题的关键是在于通过翻折点轴对称),然后利用三角形三边关系及垂线段最短原理,判断出最小值为.3、D【解析】【分析】将代入函数关系式即可得.【详解】解:将代入得:,即获利为1000元,故选:D.【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.4、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.5、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数y=,∴,解得:x>﹣3.故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.6、B【解析】【分析】根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.【详解】一个等腰三角形的腰长为x,底边长为y,周长是10,即即解得即解得底边y关于腰长x之间的函数关系式为故选B【点睛】本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.7、B【解析】【分析】先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.【详解】解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,故选项A正确;设小南t小时追上小开,50(2+1+0.5+t)=100t,解得t=3.5,∴100×3.5=350千米,故选项B不正确;50(2+1+0.5+t+0.5)=100t,解得t=4,∴小南到达景区时共用2+1+0.5+4=7.5小时,故选项C正确;∵100×4=400千米,∴家距离景区共400千米,故选项D正确.故选B.【点睛】本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.8、B【解析】【分析】根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;B、车以40千米小时的速度行驶1小时,路程为,,最少消耗4升汽油,此项合理,符合题意;C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.故选:B.【点睛】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.9、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10、C【解析】【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【详解】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点睛】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.二、填空题1、 变量 常量 变化【解析】略2、 自变量 函数 取值范围【解析】略3、 s=60t 60 t和s s t【解析】略4、##【解析】【分析】将代入f(x)=,求解即可.【详解】解:将代入f(x)=,得:f(2).故答案为:.【点睛】此题考查了函数的代入求值,解题的关键是将代入f(x)=求解.5、【解析】【分析】函数表达式是分式时,考虑分式的分母不能为0,可得答案;【详解】由题意得:解得故答案为.【点睛】本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.三、解答题1、 (1)(2)当点P在线段BC上时,;当点P在CB延长线上时,(3)4或或【解析】【分析】(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到,由勾股定理求出CD,BF,得到DP,由,推出,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,求出,勾股定理求得PH,根据,求出函数解析式;(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.(1)解:ABC中,,,AB=6,∵,∴△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,∵,,∴,∴AC=AM=CM,∴△ACM是等边三角形,∴,∴∠B=;(2)解:当点P在线段BC上时,过点A作AD⊥BC于D,在△ADB中,∠ADB=,∠B=,∴,同理,∴,在Rt△BEF中,,∴,∴,又∵BP=2BF,∴,∴DP =,∵,∴,∴,∵y>0,∴;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,∵PE=BE=x,, ∴,∴,∴,∵,∴,∴,∵y>0,∴;综上,当点P在线段BC上时,;当点P在CB延长线上时,;(3)解:当AP=BP时,则∠PAB=∠B=,如图,∴∠APB =,∵EF为PB的垂直平分线,∴PE=BE,∴∠BPE=∠B=,∴∠APE=,∴AE=2PE=2BE,∵AE+BE=6,∴AE=4;当BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠B=,∴BE=2EF,∵,∴,∴AE=AB-BE=;当点P在CB延长线上且BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠EBF=,∴BE=2EF,∵,∴,∴AE=AB+BE=;综上,AE的值为4或或.【点睛】此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.2、(1)h=1.2x+2.8;(2)7【解析】【分析】(1)根据表格中数据变化规律得出答案;(2)根据函数关系式,当h=11.2cm时,求出相应的x的值即可.【详解】解:(1)由表格中两个变量的变化关系可得,h=4+1.2(x−1)=1.2x+2.8,答:h=1.2x+2.8;(2)当h=11.2cm时,即1.2x+2.8=11.2,解得x=7,答:当这摞碗的高度为11.2cm,碗的数量为7只.【点睛】本题考查常量与变量,函数的表示方法,理解变量与常量的意义,根据表格中两个变量的变化规律得出函数关系式是得出答案的关键.3、(1)见解析;(2),见解析【解析】【分析】(1)先列表,然后画出函数图像即可;(2)先根据题意求出函数解析式,然后列表,最后画出函数图像即可【详解】解:(1)由题意得:y=|x-1|,即y;x12y=x-101 x01y=-x+110 函数图象如图:(2)由题意得:y=|x-(-3)|=|x+3|,即y;x-3-2y=x+301 x-4-3y=-x-310 函数图象如图:【点睛】本题主要考查函数及其图像,掌握函数图象的画法是解题的关键.4、(1)(2)(3)都含有两个变量;(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;(2)可将看成的函数,的取值范围是:;(3)可将看成的函数,的取值范围是:【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案,结合图像分析出自变量的取值范围即可;【详解】(1)(2)(3)都含有两个变量;(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;(2)可将看成的函数,的取值范围是:;(3)可将看成的函数,的取值范围是:【点睛】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5、【解析】【分析】由等腰三角形的周长=腰长×2+底长,可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).【详解】解:由题意得,=80,所以,y=80-2x,由于三角形两边之和大于第三边,且边长大于0,所以,解得,所以.【点睛】本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.
相关试卷
这是一份2020-2021学年第二十章 函数综合与测试同步测试题,共21页。试卷主要包含了函数中,自变量x的取值范围是,函数y=的自变量x的取值范围是,如图所示的图象等内容,欢迎下载使用。
这是一份2021学年第二十章 函数综合与测试测试题,共22页。
这是一份冀教版八年级下册第二十章 函数综合与测试习题,共24页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)