数学八年级下册第二十二章 四边形综合与测试练习题
展开
这是一份数学八年级下册第二十二章 四边形综合与测试练习题,共30页。试卷主要包含了在中,若,则的度数是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 ( )A.5 B.6 C.8 D.102、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )A.3 B.4 C.5 D.63、如图,在中,,于点D,F在BC上且,连接AF,E为AF的中点,连接DE,则DE的长为( )A.1 B.2 C.3 D.44、在下列条件中,不能判定四边形是平行四边形的是( )A.AB∥CD,AD∥BC B.AB=CD,AD=BCC.AB ∥CD,AB=CD D.AB∥CD,AD=BC5、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形 B.菱形 C.正方形 D.梯形6、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )A.18 B.16 C.14 D.127、正方形具有而矩形不一定具有的性质是( )A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等8、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )A.7 B.6 C.4 D.89、在中,若,则的度数是( )A. B. C. D.10、下列说法错误的是( )A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角C.矩形的对角线互相垂直 D.正方形有四条对称轴第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在Rt中,,CD是斜边AB上的中线,已知,,则的周长等于______.2、三角形的中位线______于三角形的第三边,并且等于第三边的______.数学表达式:如图,∵AD=BD,AE=EC,∴DE∥BC,且DE=BC.3、一个多边形的每个内角都等于120°,则这个多边形的边数是______.4、如图,已知AD为的高,,以AB为底边作等腰,,交AC于F,连ED,EC,有以下结论:①;②;③;④;其中正确的是___.5、如图,点M,N分别是的边AB,AC的中点,若,,则______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形ABCD,点E在边BC上,连接AE.(1)尺规作图:作,使,点F是的边与线段AB的交点.(不写作法,保留作图痕迹);(2)探究:AE,DF的位置关系和数量关系,并说明理由.2、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.(1)如图1,CDOB,CD=OA,连接AD,BD.① ;②若OA=2,OB=3,则BD= ;(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.3、如图,已知平行四边形ABCD.(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.4、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.5、已知在与中,,点在同一直线上,射线分别平分. (1)如图1,试说明的理由;(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;(3)当时,求的度数. -参考答案-一、单选题1、A【解析】【分析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.【详解】解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,∴每个外角是:180°−108°=72°,∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.故选:A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.2、D【解析】【分析】如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.【详解】解:如图,过点作于点,连接,由题意知∴四边形为平行四边形∵∴四边形为矩形∴∵∴∵∴∴是等腰直角三角形∴①∵,∴为等腰直角三角形∴,∴∴四边形是平行四边形∴∴故①正确;②∵∴四边形为矩形∴四边形的周长故②正确;③四边形为矩形∵在和中∵∴∴∴故③正确;④∵当最小时,最小∴当时,即时,的最小值等于故④正确;⑤在和中,,∴故⑤正确;⑥如图1,延长与交于点 ∵在和中∵∴∴∵∴∴故⑥正确;综上,①②③④⑤⑥正确,故选:.【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.3、B【解析】【分析】先求出,再根据等腰三角形的三线合一可得点是的中点,然后根据三角形中位线定理即可得.【详解】解:,,,(等腰三角形的三线合一),即点是的中点,为的中点,是的中位线,,故选:B.【点睛】本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.4、D【解析】略5、B【解析】【分析】根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.【详解】展得到的图形如上图,由操作过程可知:AB=CD,BC=AD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故选:B.【点睛】本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.6、B【解析】略7、B【解析】略8、A【解析】【分析】如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接AC,OB交于点D,∵C是直线与y轴的交点,∴点C的坐标为(0,2),∵OA=4,∴A点坐标为(4,0),∵四边形OABC是矩形,∴D是AC的中点,∴D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,∴,∴,故选A.【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.9、B【解析】【分析】利用平行四边形的对角相等即可选择正确的选项.【详解】解:四边形是平行四边形,,,,故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.10、C【解析】【分析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.二、填空题1、##【解析】【分析】过点作,根据直角三角形斜边上的中线等于斜边的一半,可得,根据等腰三角形的三线合一可得,中位线的性质求得,根据勾股定理求得,继而求得的周长.【详解】解:如图,过点作在Rt中,,CD是斜边AB上的中线,为的中点,又为的中点,则在中,的周长等于故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.2、 平行 一半【解析】略3、6【解析】【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.4、①③【解析】【分析】只要证明,,是的中位线即可一一判断;【详解】解:如图延长交于,交于.设交于.,,,,,,故①正确,,,,,,不垂直,故②错误,,,,,,,是等腰直角三角形,平分,,,,,,故③正确,,,,,,故④正确.故答案是:①③.【点睛】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.5、45°##45度【解析】【分析】根据三角形中位线定理得出,进而利用平行线的性质解答即可.【详解】解:、分别是的边、的中点,,,,,,,故答案是:.【点睛】本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.三、解答题1、 (1)见解析;(2),,见解析【解析】【分析】(1)根据题意作出即可;(2)证明即可得结论.(1)如图,即为所求.(2),.∵四边形ABCD是正方形,∴,.在和中, ∴(AAS),∴.∵,.∴,即.【点睛】本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.2、 (1)△DCA;(2)∠ABO+∠OCE=45°,理由见解析(3)【解析】【分析】(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.(1)解:①∵CD∥OB,∴∠ACD=∠BOA=90°,又∵OB=CA,OA=CD,∴△AOB≌△DCA(SAS);故答案为:△DCA;②如图所示,过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,∴CD=OA=2,AC=OB=3,∵OC⊥OB,DR⊥OB,CD∥OB,∴DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,∴BR=OB+OR=5,∴;故答案为:;(2)解:∠ABO+∠OCE=45°,理由如下:如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,在△AOB和△WCA中,,∴△AOB≌△WCA(SAS),∴AB=AW,∠ABO=∠WAC,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠BAO+∠WAC=90°,∴∠BAW=90°,又∵AB=AW,∴∠ABW=∠AWB=45°,∵BE⊥OC,CW⊥OC,∴BE∥CW,又∵BE=OA=CW,∴四边形BECW是平行四边形,∴BW∥CE,∴∠WJC=∠BWA=45°,∵∠WJC=∠WAC+∠JCA,∴∠ABO+∠OCE=45°;(3)解:如图3-1所示,连接AF,∴,∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,∵E是OB的中点,BE=OA,∴BE=OE=OA,∴OB=AC=2OA,∵△CFQ是等腰直角三角形,CF=QF,∴∠CFQ=∠CFA=90°,∴,∴,∴.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.3、 (1)见解析(2)见解析【解析】【分析】(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.(1)如图,DE、BF为所作;(2)证明:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,AD∥BC,∵CE=CD,∴CE=AB,∵BF平分∠ABC,∴∠ABF=∠CBF,∵AFBC,∴∠CBF=∠F,∴∠ABF=∠F,∴AB=AF,∴CE=AF,即CB+BE=AD+DF,∴BE=DF,∵BEDF,∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.4、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:,解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..5、 (1)理由见解析(2),理由见解析(3)【解析】【分析】(1),,可知,进而可说明;(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,,得;又由(1)中证明可知,,进而可得到结果;(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.(1)证明:又在和中.(2)解:.理由如下:如图1所示,连接并延长至点K分别平分则设为的外角同理可得即.又由(1)中证明可知由三角形内角和公式可得即.(3)解:当时,如图2所示,过点C作,则,即由(1)中证明可得在中,根据三角形内角和定理有即即即,解得:故.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共30页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
这是一份初中冀教版第二十二章 四边形综合与测试同步练习题,共37页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试课后练习题,共28页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。