开学活动
搜索
    上传资料 赚现金

    2021-2022学年度冀教版八年级数学下册第二十二章四边形同步训练试卷

    2021-2022学年度冀教版八年级数学下册第二十二章四边形同步训练试卷第1页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形同步训练试卷第2页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形同步训练试卷第3页
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题,共25页。
    八年级数学下册第二十二章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点DE分别是△ABCBABC的中点,AC=3,则DE的长为(       A.2 B. C.3 D.2、若菱形的周长为8,高为2,则菱形的面积为(       A.2 B.4 C.8 D.163、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是(       A.长度为的线段 B.边长为2的等边三角形C.斜边为2的直角三角形 D.面积为4的菱形4、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是(   )A.20 B.40 C.60 D.805、能够判断一个四边形是矩形的条件是(       A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线垂直且相等6、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是(       A.5或6 B.6或7 C.5或6或7 D.6或7或87、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为(       A.12° B.24° C.39° D.45°8、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线ly=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )A.7 B.6 C.4 D.89、如图,四边形中,,对角线相交于点于点于点,连接,若,则下列结论:③四边形是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是(       A.4 B.3 C.2 D.110、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点PQ也随之移动.点PQ分别在边ABAD上移动,则点A′在BC边上可移动的最大距离为(       A.8 B.10 C.12 D.16第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知在△ABC中,DE分别是ABAC的中点,FG分别是ADAE的中点,且FG=2 cm,则BC的长度是_______ cm.2、如图,点E是矩形ABCDAD上一点,点FGH分别是BEBCCE的中点,AF=6,则GH的长为_________.3、如图1,在平面直角坐标系xOy中,□ABCD的面积为10,且边ABx轴上.如果将直线y=﹣x沿x轴正方向平移,在平移过程中,记该直线在x轴上平移的距离为m,直线被平行四边形的边所截得的线段的长度为n,且nm的对应关系如图2所示,那么图2中a的值是 ___,b的值是 ___.4、如图,菱形ABCD的边长为4,∠BAD=120°,E是边CD的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60°得到线段EF',连接AF'、BF',则△ABF'的周长的最小值是________________.5、如图,ABC均为一个正十边形的顶点,则∠ACB=_____°.三、解答题(5小题,每小题10分,共计50分)1、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,EF分别是边的中点.(1)若,求的长.小兰说:取的中点P,连接.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到的数量关系,你觉得小花说得对吗?若对,请你帮小花得到的数量关系,并说明理由.2、如图,矩形ABCD的对角线ACBD相交于点OAB=5cm,∠BOC=120°,求矩形对角线的长.3、如图,▱ABCD中,EBC边的中点,求证:DCCF4、如图,已知矩形ABCDABAD).EBC上的点,AE=AD(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.5、已知:线段m求作:矩形ABCD,使矩形宽ABm,对角线ACm -参考答案-一、单选题1、D【解析】2、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.3、D【解析】【分析】先计算出正方形的对角线长,即可逐项进行判定求解.【详解】解:A、正方形的边长为2,对角线长为长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,故选:D.【点睛】本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.4、B【解析】【分析】根据菱形的面积公式求解即可.【详解】解:这个菱形的面积=×10×8=40.故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.5、C【解析】6、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.7、C【解析】【分析】由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.【详解】解:折叠,是矩形故选:C.【点睛】本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.8、A【解析】【分析】如图所示,连接ACOB交于点D,先求出C和A的坐标,然后根据矩形的性质得到DAC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接ACOB交于点DC是直线y轴的交点,∴点C的坐标为(0,2),OA=4,A点坐标为(4,0),∵四边形OABC是矩形,DAC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为故选A.【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.9、B【解析】【分析】DE=BF以及DF=BE,可证明RtDCFRtBAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.【详解】解:中,,(故①正确);于点于点四边形是平行四边形,,(故②正确);四边形是平行四边形,(故③正确);由以上可得出:等.(故④错误),故正确的有3个,故选:【点评】此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.10、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得AC,根据勾股定理,可得AC,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,BC=AD=20,pB重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当QD重合时,由折叠得AD=AD=20,由勾股定理,得CA′==16,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.二、填空题1、8【解析】2、6【解析】【分析】由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.【详解】解:在矩形ABCD中,∠BAD=90°,FBE的中点,AF=6,BE=2AF=12.GH分别为BCEC的中点,GH=BE=6,故答案为6.【点睛】根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH3、     7     【解析】【分析】在图1中,过点DBC作直线与已知直线y=﹣x平行,交x轴于点EF,过DDGx轴于G,在图2中,取A'(2,0),E'(5,b),B'(ab),F'(10,0),求出OAm=2,OEm=5,DEnb,则AE=3,OFm=10,OBma,根据ABCD的面积为10,求出DG=2,得到DE即为b值.【详解】解:在图1中,过点DBC作直线与已知直线y=﹣x平行,交x轴于点EF,过DDGx轴于G在图2中,取A'(2,0),E'(5,b),B'(ab),F'(10,0),图1中点A对应图2中的点A',得出OAm=2,图1中点E对应图2中的点E',得出OEm=5,DEnb,则AE=3,图1中点F对应图2中的点F',得出OFm=10,图1中点B对应图2中的点B',得出OBmaaOBOFBFBFAE=3,OF=10a=7,ABCD的面积为10,ABOBOA=7﹣2=5,DG=2,在RtDGE中,∠DEG=45°,DE=故答案是:7,【点睛】此题考查了平行四边形与函数图象的结合,正确掌握平行四边形的性质,直线y=﹣x与坐标轴夹角45度的性质,一次函数图象平行的性质,勾股定理,正确理解函数图象得到相关信息是解题的关键.4、4+2【解析】【分析】AD中点G,连接EGF'GBE,作BHDC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得AE关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.【详解】解:取AD中点G,连接EGF'GBE,作BHDC的延长线于点H∵四边形ABCD为菱形,ABAD∵∠BAD=120°,∴∠CAD=60°,∴△ACD为等边三角形,又∵DEDG∴△DEG也为等边三角形.DEGE∵∠DEG=60°=∠FEF',∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG即∠DEF=∠GEF',由线段EF绕着点E顺时针旋转60°得到线段EF',所以EFEF'.在△DEF和△GEF'中,∴△DEF≌△GEF'(SAS).∴∠EGF'=∠EDF=60°,∴∠F'GA=180°﹣60°﹣60°=60°,则点F'的运动轨迹为射线GF'.观察图形,可得AE关于GF'对称,AF'=EF',BF'+AF'=BF'+EF'≥BE在Rt△BCH中,∵∠H=90°,BC=4,∠BCH=60°,在Rt△BEH中,BE=2BF'+EF'≥2∴△ABF'的周长的最小值为AB+BF'+EF'=4+2故答案为:4+2【点睛】本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.5、【解析】【分析】根据正多边形外角和和内角和的性质,得;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.【详解】如图,延长BA∵正十边形,正十边形内角,即 根据题意,得四边形内角和为:,且 根据题意,得五边形内角和为:,且 故答案为:【点睛】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.三、解答题1、 (1)(2),理由见解析【解析】【分析】(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;(2)方法同(1).(1)解:如图,取的中点P,连接 PEF分别是边的中点, ,,中,(2),理由如下,如图,取的中点P,连接 PEF分别是边的中点,,,,中,【点睛】本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.2、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,ACBDOAOCACOBODBD,推出OAOB,求出等边三角形AOB,求出OAOBAB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,ACBDOAOCACOBODBDOAOB∵∠AOB=60°,∴△AOB是等边三角形,AB=5cm,OAOBAB=5cm,AC=2AO=10cmBDAC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OAOB的长,题目比较典型,是一道比较好的题目.3、见解析【解析】【分析】根据平行四边形的性质可得ABCDABCD,根据平行线的性质可得BAECFE,根据中点的定义可得EBEC,利用AAS可证明ABE≌△FCE,可得ABCF,进而可得结论【详解】∵四边形ABCD是平行四边形,ABCDABCD∴∠BAE=∠CFEEBC中点,EBEC在△ABE与△FCE中,∴△ABE≌△FCEAAS),ABCFDCCF【点睛】本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键4、 (1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由ADBC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,ADBC=5,ABCD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.AE=AD,∠EAF=∠DAFAF=AF∴△AEF≌△ADF∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE∵在矩形ABCD中,ADBC∴∠BEA=∠DAE∴∠EFC=∠BEA(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,ADBC=5,ABCD=4,AEAD=5,BE=3,ECBCBE=5﹣3=2,由(1)得:△AEF≌△ADF 中,【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.5、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过ABC的平行线AD,过CAB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结ACABC的平行线,与过CAB的平行线交于D则四边形ABCD为所求作矩形; ADBCCDAB∴四边形ABCD为平行四边形,BCAB∴∠ABC=90°,∴四边形ABCD为矩形,AB=AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键. 

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试随堂练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共30页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试练习题:

    这是一份数学八年级下册第二十二章 四边形综合与测试练习题,共30页。试卷主要包含了在中,若,则的度数是等内容,欢迎下载使用。

    2020-2021学年第二十二章 四边形综合与测试同步练习题:

    这是一份2020-2021学年第二十二章 四边形综合与测试同步练习题,共28页。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map