冀教版八年级下册第二十二章 四边形综合与测试课时练习
展开
这是一份冀教版八年级下册第二十二章 四边形综合与测试课时练习,共31页。试卷主要包含了如图,在中,DE平分,,则,如图,E,下列说法不正确的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )
A.线段EF的长逐渐增大 B.线段EF的长逐渐减小
C.线段EF的长不改变 D.线段EF的长不能确定
2、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为( )
A.3 B.4 C.14 D.18
3、下列关于的叙述,正确的是( )
A.若,则是矩形 B.若,则是正方形
C.若,则是菱形 D.若,则是正方形
4、如图,在中,DE平分,,则( )
A.30° B.45° C.60° D.80°
5、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③ B.①②④ C.①③④ D.②③④
6、下列说法不正确的是( )
A.三角形的外角大于每一个与之不相邻的内角
B.四边形的内角和与外角和相等
C.等边三角形是轴对称图形,对称轴只有一条
D.全等三角形的周长相等,面积也相等
7、正方形具有而矩形不一定具有的性质是( )
A.四个角相等 B.对角线互相垂直
C.对角互补 D.对角线相等
8、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1 B. C. D.2
9、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是( )
A.长度为的线段 B.边长为2的等边三角形
C.斜边为2的直角三角形 D.面积为4的菱形
10、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )
A.3 B.6 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.
2、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.
3、如图,AC是正五边形ABCDE的对角线,则为______度.
4、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
5、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
2、若直线分别交轴、轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥轴,B为垂足,且S△ABC= 6
(1)求点B和P的坐标;
(2)点D是直线AP上一点,△ABD是直角三角形,求点D坐标;
(3)请问坐标平面是否存在点Q,使得以Q、C、P、B为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.
3、(1)【发现证明】
如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
(2)【类比引申】
①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
(3)【联想拓展】如图1,若正方形的边长为6,,求的长.
4、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.
①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
①方法1:一路往下数,不回头数.
以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
以OAn-1为边的锐角有∠An-1OAn,共有1个;
则图中锐角的总个数是 ;
②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
用两种不同的方法数锐角个数,可以得到等式 .
(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
①计算:19782+20222;
②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
5、尺规作图并回答问题:(保留作图痕迹)
已知:如图,四边形ABCD是平行四边形.
求作:菱形AECF,使点E,F分别在BC,AD上.
请回答:在你的作法中,判定四边形AECF是菱形的依据是 .
-参考答案-
一、单选题
1、C
【解析】
【分析】
因为R不动,所以AR不变.根据中位线定理,EF不变.
【详解】
解:连接AR.
因为E、F分别是AP、RP的中点,
则EF为的中位线,
所以,为定值.
所以线段的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
2、A
【解析】
【分析】
由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.
【详解】
解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,
过点B作BH⊥DC于点H,
设CH=x,则DH=8-x,
则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,
解得:
则:,
则,
故选:A.
【点睛】
本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
3、A
【解析】
【分析】
由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
【详解】
解:中,,
四边形是矩形,选项符合题意;
中,,
四边形是菱形,不一定是正方形,选项不符合题意;
中,,
四边形是矩形,不一定是菱形,选项不符合题意;
中,,
四边形是菱形,选项不符合题意;
故选:.
【点睛】
本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
4、C
【解析】
【分析】
根据平行四边形的性质得,故,由DE平分得,即可计算.
【详解】
∵四边形ABCD是平行四边形,
∴,
∴,
∵DE平分,
∴,
∴.
故选:C.
【点睛】
本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.
5、B
【解析】
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
6、C
【解析】
【分析】
根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.
【详解】
∵三角形的外角大于每一个与之不相邻的内角,正确,
∴A不符合题意;
∵四边形的内角和与外角和都是360°,
∴四边形的内角和与外角和相等,正确,
∴B不符合题意;
∵等边三角形是轴对称图形,对称轴有三条,
∴等边三角形是轴对称图形,对称轴只有一条,错误,
∴C符合题意;
∵全等三角形的周长相等,面积也相等,正确,
∴D不符合题意;
故选C.
【点睛】
本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.
7、B
【解析】
略
8、D
【解析】
【分析】
由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°-∠BEF-∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3-x,
∴2(3-x)=x,
解得x=2.
故选:D.
【点睛】
本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
9、D
【解析】
【分析】
先计算出正方形的对角线长,即可逐项进行判定求解.
【详解】
解:A、正方形的边长为2,
对角线长为,
长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;
B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,
故选:D.
【点睛】
本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.
10、B
【解析】
【分析】
连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
【详解】
解:连接,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,
∵点是AC的中点, ∴,
∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,
∴
∴,
∴是等边三角形,
∴∠BAA'=60°,
∴∠ACB=30°,
∵AB=3, ∴AC=2AB=6,
∴.
即点B与点之间的距离为6.
故选:B.
【点睛】
本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
二、填空题
1、90
【解析】
【分析】
根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
【详解】
如图,根据折叠的性质,∠1=∠2,∠3=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°,
∴∠2+∠3=90°,
∴=90°,
故答案为:90.
【点睛】
本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
2、
【解析】
【分析】
根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
【详解】
解:当y=0时,有x-1=0,
解得:x=1,
∴点A1的坐标为(1,0).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
∴Bn(2n-1,2n-1)(n为正整数),
故答案为:
【点睛】
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
3、72
【解析】
【分析】
先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.
【详解】
解:五边形是正五边形,
,
,
,
故答案为:72.
【点睛】
本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.
4、(0,-5)
【解析】
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
5、6
【解析】
【分析】
利用多边形的外角和以及多边形的内角和定理即可解决问题.
【详解】
解:多边形的外角和是360度,多边形的内角和是外角和的2倍,
则内角和是720度,
,
这个多边形的边数为6.
故答案为:6.
【点睛】
本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.
三、解答题
1、证明见解析
【解析】
【分析】
平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
【详解】
证明:∵四边形 是平行四边形
∴
∵
∴
∵
∴四边形为平行四边形
又∵
∴四边形是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
2、 (1)B(2,0),P(2,3)
(2)(2,3)或(,)
(3)(0,5)或(0,-1)或(4,1)
【解析】
【分析】
(1)设B(x,0),则P(x,x+2),由S△ABC=6列方程求出x的值,即得到点B和点P的坐标;
(2)当点D与点P重合时,△ABD是直角三角形;当点D与点P不重合时,过点C作CE⊥AP,先求出直线CE的解析式,再由直线BD∥CE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;
(3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.
(1)
解:如图1,设B(x,0),则P(x,x+2),
对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,
∴A(-4,0),C(0,2),
∵点P在第一象限,且S△ABC=6,
∴×2(x+4)=6,
解得x=2,
∴B(2,0),P(2,3).
(2)
如图1,点D与点P重合,此时∠ABD=∠ABP=90°,
∴△ABD是直角三角形,
此时D(2,3);
如图2,点D在线段AP上,∠ADB=90°,
此时△ABD是直角三角形,作CE⊥AP,交x轴于点E,
则∠ACE=∠ADB=90°,
∴BD∥CE,AC=,
设E(m,0),
由AE•OC=AC•CE=S△ACE,得AE•OC=AC•CE,
∴2(m+4)=CE,
∴CE=(m+4),
∵∠COE=90°,
∴OE2+OC2=CE2,
∴m2+22=(m+4)]2,
整理得,m2-2m+1=0,
解得,m1=m2=1,
∴E(1,0);
设直线CE的解析式为y=kx+2,则k+2=0,
解得,k=-2,
∴y=-2x+2;
设直线BD的解析式为y=-2x+n,则-2×2+n=0,
解得,n=4,
∴y=-2x+4,
由,得:,
∴D(,);
由图象可知,当点D在PA的延长线上,或点D在AP的延长线上,则△ABD不能是直角三角形,
综上所述,点D的坐标是(2,3)或(,);
(3)
存在.如图,
当四边形CQBP是平行四边形时,
此时,CQ=PB=3,
∴Q(0,-1);
当四边形CQ1PB是平行四边形时,
此时,CQ1=PB=3,
∴Q1(0,5);
当四边形CPQ2B是平行四边形时,
此时,CP∥BQ2且CB∥PQ2,
∴Q2(4,1);
综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).
【点睛】
此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.
3、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
【解析】
【分析】
(1)证明,可得出,则结论得证;
(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
(3)求出,设,则,,在中,得出关于的方程,解出则可得解.
【详解】
(1)证明:把绕点顺时针旋转至,如图1,
,,,
,
,,三点共线,
,
,
,
,
,
,
,
;
(2)①不成立,结论:;
证明:如图2,将绕点顺时针旋转至,
,,,,
,
,
,
;
②如图3,将绕点逆时针旋转至,
,,
,
,
,
,
,
,
.
即.
故答案为:.
(3)解:由(1)可知,
正方形的边长为6,
,
.
,
,
设,则,,
在中,
,
,
解得:.
,
.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
4、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
【解析】
【分析】
(1)①根据边长为(a+b)的正方形面积公式求解即可;
②利用矩形和正方形的面积公式求解即可;
(2)①根据题中的数据求和即可;
②根据题意求解即可;
(3)①利用(1)的规律求解即可;
②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
【详解】
解:(1)①大正方形的面积为;
②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
可以得到等式:=;
故答案为:①;②;=;
(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
②锐角的总个数是n(n-1);
可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
(3)①19782+20222=[2000+(-22)]2+(2000+22)2
=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
=2×(20002+222)
=2×[4000000+(20+2)2]
=2×[4000000+(202+22+2×20×2)]=8000968;
②一个四边形共有2条对角线,即×4×(4-3)=2;
一个五边形共有5条对角线,即×5×(5-3)=5;
一个六边形共有9条对角线,即×6×(6-3)=9;
……,
一个十七边形共有×17×(17-3)=119条对角线;
一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
故答案为:119,n(n-3).
【点睛】
本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
5、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
【解析】
【分析】
根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.
【详解】
解:如图,四边形AECF即为所求作.
理由:四边形ABCD是平行四边形,
∴AE∥CF,
∴∠EAO=∠FCO,
∵EF垂直平分线段AC,
∴OA=OC,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,
∴四边形AECF是平行四边形,
∵EA=EC或AC⊥EF,
∴四边形AECF是菱形.
故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
【点睛】
本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份数学第二十二章 四边形综合与测试综合训练题,共33页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试同步训练题,共28页。
这是一份冀教版八年级下册第二十二章 四边形综合与测试课后练习题,共28页。试卷主要包含了下列命题错误的是,下列命题是真命题的有个.,下列说法错误的是等内容,欢迎下载使用。