![2022年强化训练冀教版八年级数学下册第二十二章四边形定向攻克试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12735040/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第二十二章四边形定向攻克试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12735040/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第二十二章四边形定向攻克试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12735040/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学八年级下册第二十二章 四边形综合与测试优秀综合训练题
展开
这是一份数学八年级下册第二十二章 四边形综合与测试优秀综合训练题,共32页。
八年级数学下册第二十二章四边形定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
A.2 B. C. D.
2、下列关于的叙述,正确的是( )
A.若,则是矩形 B.若,则是正方形
C.若,则是菱形 D.若,则是正方形
3、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )
A.3 B.4 C.5 D.6
4、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )
A.14 B.16 C.18 D.12
5、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为( )
A.22.5° B.27.5° C.30° D.35°
6、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
7、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
A.a B.a C.a D.a
8、如图,点D,E分别是△ABC边BA,BC的中点,AC=3,则DE的长为( )
A.2 B. C.3 D.
9、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )
A.80° B.90° C.100° D.110°
10、小明想判断家里的门框是否为矩形,他应该( )
A.测量三个角是否都是直角 B.测量对角线是否互相平分
C.测量两组对边是否分别相等 D.测量一组对角是否是直角
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、平行四边形的判定方法:
(1)两组对边分别______的四边形是平行四边形
(2)两组对边分别______的四边形是平行四边形
(3)两组对角分别______的四边形是平行四边形
(4)对角线______的四边形是平行四边形
(5)一组对边______的四边形是平行四边形
2、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.
3、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.
4、添加一个条件,使矩形ABCD是正方形,这个条件可能是 _____.
5、如图,在平行四边形 ABCD 中,∠D=100°,AC 为对角线,将△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,使点 D 的对应点 E 落在边 AB 上,若点 C 的对应点 F 落在边CB 的延长线上,则∠EFB 的度数为___.
三、解答题(5小题,每小题10分,共计50分)
1、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.
(1)如图1,CDOB,CD=OA,连接AD,BD.
① ;
②若OA=2,OB=3,则BD= ;
(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
2、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.
(1)求证:四边形ABCD是矩形;
(2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.
3、已知:线段m.
求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
4、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD、DF的长;
(2)如图①,连接EF,求证四边形AEFD是平行四边形;
(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
5、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.
(1)求证:AF=CG;
(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?
-参考答案-
一、单选题
1、B
【解析】
【分析】
先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴△ABD和△BCD是等腰直角三角形,
如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
∴重叠部分的四边形D'EBF为平行四边形,
设DD'=x,则D'C=6-x,D'E=x,
∴S▱D'EBF=D'E•D'C=(6-x)x=4,
解得:x=3+或x=3-,
故选:B.
【点睛】
本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
2、A
【解析】
【分析】
由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
【详解】
解:中,,
四边形是矩形,选项符合题意;
中,,
四边形是菱形,不一定是正方形,选项不符合题意;
中,,
四边形是矩形,不一定是菱形,选项不符合题意;
中,,
四边形是菱形,选项不符合题意;
故选:.
【点睛】
本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
3、D
【解析】
【分析】
如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.
【详解】
解:如图,过点作于点,连接,
由题意知
∴四边形为平行四边形
∵
∴四边形为矩形
∴
∵
∴
∵
∴
∴是等腰直角三角形
∴
①∵,
∴为等腰直角三角形
∴
,
∴
∴四边形是平行四边形
∴
∴
故①正确;
②∵
∴四边形为矩形
∴四边形的周长
故②正确;
③四边形为矩形
∵在和中
∵
∴
∴
∴
故③正确;
④∵
当最小时,最小
∴当时,即时,的最小值等于
故④正确;
⑤在和中,,
∴
故⑤正确;
⑥如图1,延长与交于点
∵在和中
∵
∴
∴
∵
∴
∴
故⑥正确;
综上,①②③④⑤⑥正确,
故选:.
【点睛】
本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.
4、B
【解析】
【分析】
根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
【详解】
解:在正方形ABCD中,,,,
∵F为DE的中点,O为BD的中点,
∴OF为的中位线且CF为斜边上的中线,
∴,
∴的周长为,
∵,
∴,
∵,
∴,
∴,
在中,,,,
∴,
∴的周长为,
故选:B.
【点睛】
题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
5、A
【解析】
【分析】
利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
【详解】
解:∵四边形ABCD是正方形,
∴BC=AD,∠DBC=45°,
∵BE=AD,
∴BE=BC,
∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
∵AC⊥BD,
∴∠COE=90°,
∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
故选:A.
【点睛】
本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
6、D
【解析】
【分析】
当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
7、A
【解析】
【分析】
根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
【详解】
解:∵以△ABC的各边的中点为顶点作,
∴的周长的周长.
∵以各边的中点为顶点作,
∴的周长的周长,
…,
∴的周长
故选:A.
【点睛】
本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
8、D
【解析】
略
9、B
【解析】
【分析】
根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.
【详解】
解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,
又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,
∴∠EBD=∠A′BE+∠DBC′=180°×=90°.
故选B.
【点睛】
此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
10、A
【解析】
【分析】
根据矩形的判定方法解题.
【详解】
解:A、三个角都是直角的四边形是矩形,
选项A符合题意;
B、对角线互相平分的四边形是平行四边形,
选项B不符合题意,
C、两组对边分别相等的四边形是平行四边形,
选项C不符合题意;
D、一组对角是直角的四边形不是矩形,
选项D不符合题意;
故选:A.
【点睛】
本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
二、填空题
1、 平行 相等 相等 互相平分 平行且相等
【解析】
略
2、28
【解析】
【分析】
由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AB//CD,AB=BC,BC//AD,
∴∠MAO=∠NCO,∠BCA=∠CAD.
在△AOM和△CON中,
,
∴△AOM≌△CON(AAS),
∴AO=CO,
又∵AB=BC,
∴BO⊥AC,
∴∠BCO=90°﹣∠OBC=28°=∠DAC.
故答案为:28.
【点睛】
本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.
3、3
【解析】
【分析】
由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案
【详解】
解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,
∵正方形ABCD边长为6,O为正方形中心,
∴AE=3,∠OAE=45°,OE⊥AB,
∴OE=3,
∵OP=6,
∴d=PE=6-3=3;
故答案为:3
【点睛】
本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.
4、或或或或
【解析】
【分析】
根据有一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形即可得出答案.
【详解】
解:根据有一组邻边相等的矩形是正方形得:这个条件可能是或或或,
根据对角线互相垂直的矩形是正方形得:这个条件可能是,
故答案为:或或或或.
【点睛】
本题考查了正方形的判定,熟练掌握正方形与矩形之间的关系是解题关键.
5、20°##20度
【解析】
【分析】
根据平行四边形 ABCD 性质求出∠DAB=180°-∠D=80°,根据△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.
【详解】
解:在平行四边形 ABCD 中,∠D=100°,
∴∠DAB=180°-∠D=80°,
∵△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,
∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,
∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°
∴∠AFC=∠ACF=
∵AD∥BC,
∴∠DAC=∠ACF=50°,
∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,
∴∠AFE=∠ACD=30°,
∴∠EFB=∠AFC-∠AFE=50°-30°=20°,
故答案为20°.
【点睛】
本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.
三、解答题
1、 (1)△DCA;
(2)∠ABO+∠OCE=45°,理由见解析
(3)
【解析】
【分析】
(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
(1)
解:①∵CD∥OB,
∴∠ACD=∠BOA=90°,
又∵OB=CA,OA=CD,
∴△AOB≌△DCA(SAS);
故答案为:△DCA;
②如图所示,过点D作DR⊥BO交BO延长线于R,
由①可知△AOB≌△DCA,
∴CD=OA=2,AC=OB=3,
∵OC⊥OB,DR⊥OB,CD∥OB,
∴DR=OC=OA+AC=5(平行线间距离相等),
同理可得OR=CD=3,
∴BR=OB+OR=5,
∴;
故答案为:;
(2)
解:∠ABO+∠OCE=45°,理由如下:
如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
在△AOB和△WCA中,
,
∴△AOB≌△WCA(SAS),
∴AB=AW,∠ABO=∠WAC,
∵∠AOB=90°,
∴∠ABO+∠BAO=90°,
∴∠BAO+∠WAC=90°,
∴∠BAW=90°,
又∵AB=AW,
∴∠ABW=∠AWB=45°,
∵BE⊥OC,CW⊥OC,
∴BE∥CW,
又∵BE=OA=CW,
∴四边形BECW是平行四边形,
∴BW∥CE,
∴∠WJC=∠BWA=45°,
∵∠WJC=∠WAC+∠JCA,
∴∠ABO+∠OCE=45°;
(3)
解:如图3-1所示,连接AF,
∴,
∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
∵E是OB的中点,BE=OA,
∴BE=OE=OA,
∴OB=AC=2OA,
∵△CFQ是等腰直角三角形,CF=QF,
∴∠CFQ=∠CFA=90°,
∴,
∴,
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
2、 (1)见解析
(2)AD=2AB,理由见解析
【解析】
【分析】
(1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
(2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
(1)
证明:∵点M是AD边的中点,
∴AM=DM,
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
在△ABM和△DCM中,
,
∴△ABM≌△DCM(SSS),
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=90°,
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(2)
解:AD与AB之间的数量关系:AD=2AB,理由如下:
∵△BCM是直角三角形,BM=CM,
∴△BCM是等腰直角三角形,
∴∠MBC=45°,
由(1)得:四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠AMB=∠MBC=45°,
∴△ABM是等腰直角三角形,
∴AB=AM,
∵点M是AD边的中点,
∴AD=2AM,
∴AD=2AB.
【点睛】
本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.
3、见详解
【解析】
【分析】
先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
【详解】
解:先作m的垂直平分线,取m的一半为AB,
以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
过A作BC的平行线,与过C作AB的平行线交于D,
则四边形ABCD为所求作矩形;
∵AD∥BC,CD∥AB,
∴四边形ABCD为平行四边形,
∵BC⊥AB,
∴∠ABC=90°,
∴四边形ABCD为矩形,
∵AB=,AC=m,
∴矩形的宽与对角线满足条件,
∴四边形ABCD为所求作矩形.
【点睛】
本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
4、 (1)AE=t,AD=12﹣2t,DF=t
(2)见解析
(3)3,理由见解析
【解析】
【分析】
(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
(2)根据对边平行且相等的四边形是平行四边形证明;
(3)根据矩形的定义列出方程,解方程即可.
(1)
解:由题意得,AE=t,CD=2t,
则AD=AC﹣CD=12﹣2t,
∵DF⊥BC,∠C=30°,
∴DF=CD=t;
(2)
解:∵∠ABC=90°,DF⊥BC,
∴,
∵AE=t,DF=t,
∴AE=DF,
∴四边形AEFD是平行四边形;
(3)
解:当t=3时,四边形EBFD是矩形,
理由如下:∵∠ABC=90°,∠C=30°,
∴AB=AC=6cm,
∵,
∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
解得,t=3,
∵∠ABC=90°,
∴四边形EBFD是矩形,
∴t=3时,四边形EBFD是矩形.
【点睛】
此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
5、 (1)见解析
(2)当AD=AB时,四边形BEDH是正方形
【解析】
【分析】
(1)要证明AF=CG,只要证明△EAF≌△HCG即可;
(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.
(1)
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,∠BAD=∠BCD,
∴∠AEF=∠CHG,
∵BE=2AB,DH=2CD,
∴BE=DH,
∴BE-AB=DH-DC,
∴AE=CH,
∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,
∴∠EAF=∠GCH,
∴△EAF≌△HCG(ASA),
∴AF=CG;
(2)
解:当AD=AB时,四边形BEDH是正方形;
理由:∵BE∥DH,BE=DH,
∴四边形EBHD是平行四边形,
∵EH⊥BD,
∴四边形EBHD是菱形,
∴ED=EB=2AB,
当AE2+DE2=AD2时,则∠BED=90°,
∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,
∴AD=AB,
∴当AD=AB时,四边形BEDH是正方形.
.
【点睛】
本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题,共26页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。
这是一份数学八年级下册第二十二章 四边形综合与测试优秀同步训练题,共30页。试卷主要包含了下列命题是真命题的有个.,如图,在中,DE平分,,则,下列说法不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品随堂练习题,共23页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)