搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练冀教版八年级数学下册第二十二章四边形定向攻克试题(含解析)

    2022年强化训练冀教版八年级数学下册第二十二章四边形定向攻克试题(含解析)第1页
    2022年强化训练冀教版八年级数学下册第二十二章四边形定向攻克试题(含解析)第2页
    2022年强化训练冀教版八年级数学下册第二十二章四边形定向攻克试题(含解析)第3页
    还剩29页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第二十二章 四边形综合与测试优秀综合训练题

    展开

    这是一份数学八年级下册第二十二章 四边形综合与测试优秀综合训练题,共32页。
    八年级数学下册第二十二章四边形定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )

    A.2 B. C. D.
    2、下列关于的叙述,正确的是( )
    A.若,则是矩形 B.若,则是正方形
    C.若,则是菱形 D.若,则是正方形
    3、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )

    A.3 B.4 C.5 D.6
    4、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )

    A.14 B.16 C.18 D.12
    5、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为(   )

    A.22.5° B.27.5° C.30° D.35°
    6、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是(   )

    A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
    B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
    C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
    D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
    7、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为(  )

    A.a B.a C.a D.a
    8、如图,点D,E分别是△ABC边BA,BC的中点,AC=3,则DE的长为( )

    A.2 B. C.3 D.
    9、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )

    A.80° B.90° C.100° D.110°
    10、小明想判断家里的门框是否为矩形,他应该( )
    A.测量三个角是否都是直角 B.测量对角线是否互相平分
    C.测量两组对边是否分别相等 D.测量一组对角是否是直角
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、平行四边形的判定方法:
    (1)两组对边分别______的四边形是平行四边形
    (2)两组对边分别______的四边形是平行四边形
    (3)两组对角分别______的四边形是平行四边形
    (4)对角线______的四边形是平行四边形
    (5)一组对边______的四边形是平行四边形
    2、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.

    3、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.

    4、添加一个条件,使矩形ABCD是正方形,这个条件可能是 _____.
    5、如图,在平行四边形 ABCD 中,∠D=100°,AC 为对角线,将△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,使点 D 的对应点 E 落在边 AB 上,若点 C 的对应点 F 落在边CB 的延长线上,则∠EFB 的度数为___.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.

    (1)如图1,CDOB,CD=OA,连接AD,BD.
    ① ;
    ②若OA=2,OB=3,则BD= ;
    (2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
    (3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
    2、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.

    (1)求证:四边形ABCD是矩形;
    (2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.
    3、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.

    4、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    5、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.

    (1)求证:AF=CG;
    (2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴△ABD和△BCD是等腰直角三角形,
    如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,

    由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
    ∴重叠部分的四边形D'EBF为平行四边形,
    设DD'=x,则D'C=6-x,D'E=x,
    ∴S▱D'EBF=D'E•D'C=(6-x)x=4,
    解得:x=3+或x=3-,
    故选:B.
    【点睛】
    本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
    2、A
    【解析】
    【分析】
    由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
    【详解】
    解:中,,
    四边形是矩形,选项符合题意;
    中,,
    四边形是菱形,不一定是正方形,选项不符合题意;
    中,,
    四边形是矩形,不一定是菱形,选项不符合题意;
    中,,
    四边形是菱形,选项不符合题意;
    故选:.
    【点睛】
    本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
    3、D
    【解析】
    【分析】
    如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.
    【详解】
    解:如图,过点作于点,连接,

    由题意知
    ∴四边形为平行四边形

    ∴四边形为矩形





    ∴是等腰直角三角形

    ①∵,
    ∴为等腰直角三角形



    ∴四边形是平行四边形


    故①正确;
    ②∵
    ∴四边形为矩形
    ∴四边形的周长
    故②正确;
    ③四边形为矩形

    ∵在和中




    故③正确;
    ④∵
    当最小时,最小
    ∴当时,即时,的最小值等于
    故④正确;
    ⑤在和中,,

    故⑤正确;
    ⑥如图1,延长与交于点

    ∵在和中







    故⑥正确;
    综上,①②③④⑤⑥正确,
    故选:.
    【点睛】
    本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.
    4、B
    【解析】
    【分析】
    根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
    【详解】
    解:在正方形ABCD中,,,,
    ∵F为DE的中点,O为BD的中点,
    ∴OF为的中位线且CF为斜边上的中线,
    ∴,
    ∴的周长为,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,,,,
    ∴,
    ∴的周长为,
    故选:B.
    【点睛】
    题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
    5、A
    【解析】
    【分析】
    利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴BC=AD,∠DBC=45°,
    ∵BE=AD,
    ∴BE=BC,
    ∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
    ∵AC⊥BD,
    ∴∠COE=90°,
    ∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
    故选:A.
    【点睛】
    本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
    6、D
    【解析】
    【分析】
    当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
    【详解】
    解:如图,连接当为各边中点时,可知分别为的中位线


    ∴四边形是平行四边形
    A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
    B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
    C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
    D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
    故选D.
    【点睛】
    本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
    7、A
    【解析】
    【分析】
    根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
    【详解】
    解:∵以△ABC的各边的中点为顶点作,
    ∴的周长的周长.
    ∵以各边的中点为顶点作,
    ∴的周长的周长,
    …,
    ∴的周长
    故选:A.
    【点睛】
    本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
    8、D
    【解析】

    9、B
    【解析】
    【分析】
    根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.
    【详解】
    解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,
    又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,
    ∴∠EBD=∠A′BE+∠DBC′=180°×=90°.
    故选B.
    【点睛】
    此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
    10、A
    【解析】
    【分析】
    根据矩形的判定方法解题.
    【详解】
    解:A、三个角都是直角的四边形是矩形,
    选项A符合题意;
    B、对角线互相平分的四边形是平行四边形,
    选项B不符合题意,
    C、两组对边分别相等的四边形是平行四边形,
    选项C不符合题意;
    D、一组对角是直角的四边形不是矩形,
    选项D不符合题意;
    故选:A.
    【点睛】
    本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
    二、填空题
    1、 平行 相等 相等 互相平分 平行且相等
    【解析】

    2、28
    【解析】
    【分析】
    由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB//CD,AB=BC,BC//AD,
    ∴∠MAO=∠NCO,∠BCA=∠CAD.
    在△AOM和△CON中,

    ∴△AOM≌△CON(AAS),
    ∴AO=CO,
    又∵AB=BC,
    ∴BO⊥AC,
    ∴∠BCO=90°﹣∠OBC=28°=∠DAC.
    故答案为:28.
    【点睛】
    本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.
    3、3
    【解析】
    【分析】
    由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案
    【详解】
    解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,

    ∵正方形ABCD边长为6,O为正方形中心,
    ∴AE=3,∠OAE=45°,OE⊥AB,
    ∴OE=3,
    ∵OP=6,
    ∴d=PE=6-3=3;
    故答案为:3
    【点睛】
    本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.
    4、或或或或
    【解析】
    【分析】
    根据有一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形即可得出答案.
    【详解】
    解:根据有一组邻边相等的矩形是正方形得:这个条件可能是或或或,
    根据对角线互相垂直的矩形是正方形得:这个条件可能是,
    故答案为:或或或或.
    【点睛】
    本题考查了正方形的判定,熟练掌握正方形与矩形之间的关系是解题关键.
    5、20°##20度
    【解析】
    【分析】
    根据平行四边形 ABCD 性质求出∠DAB=180°-∠D=80°,根据△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.
    【详解】
    解:在平行四边形 ABCD 中,∠D=100°,
    ∴∠DAB=180°-∠D=80°,
    ∵△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,
    ∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,
    ∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°
    ∴∠AFC=∠ACF=
    ∵AD∥BC,
    ∴∠DAC=∠ACF=50°,
    ∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,
    ∴∠AFE=∠ACD=30°,
    ∴∠EFB=∠AFC-∠AFE=50°-30°=20°,
    故答案为20°.
    【点睛】
    本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.
    三、解答题
    1、 (1)△DCA;
    (2)∠ABO+∠OCE=45°,理由见解析
    (3)
    【解析】
    【分析】
    (1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
    (2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
    (3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
    (1)
    解:①∵CD∥OB,
    ∴∠ACD=∠BOA=90°,
    又∵OB=CA,OA=CD,
    ∴△AOB≌△DCA(SAS);
    故答案为:△DCA;

    ②如图所示,过点D作DR⊥BO交BO延长线于R,
    由①可知△AOB≌△DCA,
    ∴CD=OA=2,AC=OB=3,
    ∵OC⊥OB,DR⊥OB,CD∥OB,
    ∴DR=OC=OA+AC=5(平行线间距离相等),
    同理可得OR=CD=3,
    ∴BR=OB+OR=5,
    ∴;
    故答案为:;

    (2)
    解:∠ABO+∠OCE=45°,理由如下:
    如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
    在△AOB和△WCA中,

    ∴△AOB≌△WCA(SAS),
    ∴AB=AW,∠ABO=∠WAC,
    ∵∠AOB=90°,
    ∴∠ABO+∠BAO=90°,
    ∴∠BAO+∠WAC=90°,
    ∴∠BAW=90°,
    又∵AB=AW,
    ∴∠ABW=∠AWB=45°,
    ∵BE⊥OC,CW⊥OC,
    ∴BE∥CW,
    又∵BE=OA=CW,
    ∴四边形BECW是平行四边形,
    ∴BW∥CE,
    ∴∠WJC=∠BWA=45°,
    ∵∠WJC=∠WAC+∠JCA,
    ∴∠ABO+∠OCE=45°;

    (3)
    解:如图3-1所示,连接AF,
    ∴,

    ∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
    ∵E是OB的中点,BE=OA,
    ∴BE=OE=OA,
    ∴OB=AC=2OA,
    ∵△CFQ是等腰直角三角形,CF=QF,
    ∴∠CFQ=∠CFA=90°,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
    2、 (1)见解析
    (2)AD=2AB,理由见解析
    【解析】
    【分析】
    (1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
    (2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
    (1)
    证明:∵点M是AD边的中点,
    ∴AM=DM,
    ∵四边形ABCD是平行四边形,
    ∴AB=DC,AB∥CD,
    在△ABM和△DCM中,

    ∴△ABM≌△DCM(SSS),
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=90°,
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (2)
    解:AD与AB之间的数量关系:AD=2AB,理由如下:
    ∵△BCM是直角三角形,BM=CM,
    ∴△BCM是等腰直角三角形,
    ∴∠MBC=45°,
    由(1)得:四边形ABCD是矩形,
    ∴AD∥BC,∠A=90°,
    ∴∠AMB=∠MBC=45°,
    ∴△ABM是等腰直角三角形,
    ∴AB=AM,
    ∵点M是AD边的中点,
    ∴AD=2AM,
    ∴AD=2AB.
    【点睛】
    本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.
    3、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
    4、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
    5、 (1)见解析
    (2)当AD=AB时,四边形BEDH是正方形
    【解析】
    【分析】
    (1)要证明AF=CG,只要证明△EAF≌△HCG即可;
    (2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.
    (1)
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,∠BAD=∠BCD,
    ∴∠AEF=∠CHG,
    ∵BE=2AB,DH=2CD,
    ∴BE=DH,
    ∴BE-AB=DH-DC,
    ∴AE=CH,
    ∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,
    ∴∠EAF=∠GCH,
    ∴△EAF≌△HCG(ASA),
    ∴AF=CG;
    (2)
    解:当AD=AB时,四边形BEDH是正方形;
    理由:∵BE∥DH,BE=DH,
    ∴四边形EBHD是平行四边形,
    ∵EH⊥BD,
    ∴四边形EBHD是菱形,
    ∴ED=EB=2AB,
    当AE2+DE2=AD2时,则∠BED=90°,
    ∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,
    ∴AD=AB,
    ∴当AD=AB时,四边形BEDH是正方形.

    【点睛】
    本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题,共26页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试优秀同步训练题:

    这是一份数学八年级下册第二十二章 四边形综合与测试优秀同步训练题,共30页。试卷主要包含了下列命题是真命题的有个.,如图,在中,DE平分,,则,下列说法不正确的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品随堂练习题,共23页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map