数学第二十二章 四边形综合与测试综合训练题
展开
这是一份数学第二十二章 四边形综合与测试综合训练题,共33页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
八年级数学下册第二十二章四边形定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
A.2 B. C. D.
2、下列命题是真命题的有( )个.
①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.
A.1 B.2 C.3 D.4
3、下列命题错误的是( )
A.两组对边分别平行的四边形是平行四边形
B.两组对边分别相等的四边形是平行四边形
C.一组对边平行,另一组对边相等的四边形是平行四边形
D.对角线互相平分的四边形是平行四边形
4、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )
A. B.
C. D.
5、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
6、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )
A.线段EF的长逐渐增大 B.线段EF的长逐渐减小
C.线段EF的长不改变 D.线段EF的长不能确定
7、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
其中说法正确的是( )
A.②③ B.①②③ C.②④ D.①②④
8、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是( )
A.360° B.900° C.1440° D.1800°
9、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为( )
A. B. C. D.
10、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
①;
②;
③四边形是平行四边形;
④图中共有四对全等三角形.
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在长方形ABCD中,,,P为AD上一点,将沿BP翻折至,PE与CD相交于点O,且,则AP的长为______.
2、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.
3、如图,在平行四边形ABCD中,AC⊥BC,E为AB中点,若CE=3,则CD=____.
4、如图,正方形中,为上一动点(不含、,连接交于,过作交于,过作于,连接,.下列结论:①;②;③平分;④,正确的是__(填序号).
5、如图,在长方形中,,,、分别在边、上,且.现将四边形沿折叠,点,的对应点分别为点,,当点恰好落在边上时,则的长为______.
三、解答题(5小题,每小题10分,共计50分)
1、(1)【发现证明】
如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
(2)【类比引申】
①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
(3)【联想拓展】如图1,若正方形的边长为6,,求的长.
2、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.
(1)求证:AE=CE;
(2)猜想线段AE,EG和GF之间的数量关系,并证明.
3、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于_____;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
4、如图,在矩形ABCD中,
(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.
(2)在(1)的条件下,求证:AE=CF.
5、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.
(1)求证:四边形AEFD为矩形;
(2)若,,,求DF的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴△ABD和△BCD是等腰直角三角形,
如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
∴重叠部分的四边形D'EBF为平行四边形,
设DD'=x,则D'C=6-x,D'E=x,
∴S▱D'EBF=D'E•D'C=(6-x)x=4,
解得:x=3+或x=3-,
故选:B.
【点睛】
本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
2、B
【解析】
【分析】
根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.
【详解】
解:①一组对边相等的四边形不一定是矩形,错误;
②两条对角线相等的平行四边形是矩形,错误;
③四条边都相等且对角线互相垂直的四边形是菱形,错误;
④四条边都相等的四边形是菱形,正确;
⑤一组邻边相等的矩形是正方形,正确.
故选:B.
【点睛】
此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.
3、C
【解析】
【分析】
根据平行四边形的判定逐项分析即可得.
【详解】
解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;
B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;
C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;
D、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,
故选:C.
【点睛】
本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.
4、C
【解析】
【分析】
根据矩形的判定定理判断即可.
【详解】
∵A满足的条件是有一个角是直角的平行四边形是矩形,
∴A合格,不符合题意;
∵B满足的条件是三个角是直角的四边形是矩形,
∴B合格,不符合题意;
∵C满足的条件是有一个角是直角的四边形,
∴无法判定,C不合格,符合题意;
∵D满足的条件是有一个角是直角的平行四边形是矩形,
∴D合格,不符合题意;
故选C.
【点睛】
本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.
5、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
6、C
【解析】
【分析】
因为R不动,所以AR不变.根据中位线定理,EF不变.
【详解】
解:连接AR.
因为E、F分别是AP、RP的中点,
则EF为的中位线,
所以,为定值.
所以线段的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
7、B
【解析】
【分析】
根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
【详解】
如图所示,
∵△ABC是直角三角形,
∴根据勾股定理:,故①正确;
由图可知,故②正确;
由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
列出等式为,
即,故③正确;
由可得,
又∵,
两式相加得:,
整理得:,
,故④错误;
故正确的是①②③.
故答案选B.
【点睛】
本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
8、C
【解析】
【分析】
设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.
【详解】
解:设每一个外角都为x,则相邻的内角为4x,
由题意得,4x+x=180°,
解得:x=36°,
多边形的外角和为360°,
360°÷36°=10,
所以这个多边形的边数为10,
则该多边形的内角和是:(10﹣8)×180=1440°.
故选:C.
【点睛】
本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.
9、A
【解析】
【分析】
设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
【详解】
解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,交于点,作ES⊥x轴于S,
∵AB∥DC,且AB=OD=OC=1,
∴四边形ABOD和四边形ABCO是平行四边形,
∴AD=OB,OA=BC,
∴AD+OA=OB+BC,
∵AE=AD,
∴AE+OA=OB+BC,
即OE=OB+BC,
∴OB+CB的最小值为OE,
由,
当时,,
解得:,
,
,
当时,,
,
,
,
取的中点,过作轴的垂线交于,
,
当时,,
,
,
,
为的中点,
,
为等边三角形,
,
,
,
,
∴FD=3,∠FDG=60°,
∴DG=DF=,
∴DE=2DG=3,
∴ES=DE=,DS=DE=,
∴OS=,
∴OE==,
∴OB+CB的最小值为,
故选:A.
【点睛】
本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OE是OB+CB的最小值.
10、B
【解析】
【分析】
由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
【详解】
解:,
,
在和中,
,
,
,(故①正确);
于点,于点,
,
,
四边形是平行四边形,
,(故②正确);
,
,
,
,
四边形是平行四边形,(故③正确);
由以上可得出:,,,
,,,等.(故④错误),
故正确的有3个,
故选:.
【点评】
此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
二、填空题
1、##
【解析】
【分析】
证明,根据全等三角形的性质得到,,根据翻折变换的性质用表示出、,根据勾股定理列出方程,解方程即可.
【详解】
解:四边形是矩形,
,,,
由折叠的性质可知,
,,,
在和中,
,
,
,,
,
设,则,,
,,
根据勾股定理得:,
即,
解得:,
,
故答案为:.
【点睛】
本题考查的是翻折变换的性质,矩形的性质,全等三角形的判定与性质和勾股定理的应用,解题的关键是熟练掌握翻折变换的性质.
2、
【解析】
【分析】
根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.
【详解】
如图,∵将纸片沿AE折叠,使点B落在点F处,
∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,
∵AD∥BC,
∴∠DAE=∠AED,
∴∠DAE=∠AED,
∴AD=DE=4,
在Rt△ADF中,由勾股定理得:,
∴EF=DE-DF=,
∴BE=EF=,
故答案为:.
【点睛】
本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.
3、6
【解析】
【分析】
由AC⊥BC,E为AB中点,若CE=3,根据直角三角形斜边的中线等于斜边的一半,可求得AB的长,然后由平行四边形的性质,求得答案.
【详解】
解:∵AC⊥BC,E为AB中点,
∴AB=2CE=2×3=6,
∵四边形ABCD是平行四边形,
∴CD=AB=6.
故答案为:6.
【点睛】
此题考查了平行四边形的性质以及直角三角形的性质.注意平行四边形的对边相等.
4、①②④
【解析】
【分析】
连接,延长交于点.可证,进而可得,由此可得出;再由,即可得出;连接交于点,则,证明,即可得出,进而可得;过点作于点,交于点,由于是动点,的长度不确定,而是定值,即可得出不一定平分.
【详解】
解:如图,连接,延长交于点.
∵为正方形的对角线
∴,
在和中
∴
∴,
∵, ,
∴
∵,
∴
∴
∴
故①正确;
∵,
∴是等腰直角三角形
∴
故②正确;
连接交于点,则
∵
∴
在和中
∴
∴
∴
故④正确.
过点作于点,交于点,是动点
∵的长度不确定,而是定值
∴不一定等于
不一定平分
故③错误;
故答案为:①②④.
【点睛】
本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.
5、4
【解析】
【分析】
由勾股定理求出F,得到D,过点作H⊥AB于H,连接BF,则四边形是矩形,求出HE,过点F作FG⊥AB于G,则四边形BCFG是矩形,利用勾股定理求出的长.
【详解】
解:在长方形中,,,
由折叠得5,
∴,
∴13=2,
过点作H⊥AB于H,连接BF,则四边形是矩形,
∴AH=D=2,
∵∠EF=∠BEF,∠FE=∠BEF,
∴∠EF=∠FE,
∴E=F=13,
∴=5,
过点F作FG⊥AB于G,则四边形BCFG是矩形,
∴BG=FC=5,
∴EG=13-5=8,
∴=4
故答案为4.
【点睛】
此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.
三、解答题
1、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
【解析】
【分析】
(1)证明,可得出,则结论得证;
(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
(3)求出,设,则,,在中,得出关于的方程,解出则可得解.
【详解】
(1)证明:把绕点顺时针旋转至,如图1,
,,,
,
,,三点共线,
,
,
,
,
,
,
,
;
(2)①不成立,结论:;
证明:如图2,将绕点顺时针旋转至,
,,,,
,
,
,
;
②如图3,将绕点逆时针旋转至,
,,
,
,
,
,
,
,
.
即.
故答案为:.
(3)解:由(1)可知,
正方形的边长为6,
,
.
,
,
设,则,,
在中,
,
,
解得:.
,
.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
2、 (1)见解析
(2)AE2+ GF2=EG2,证明见解析
【解析】
【分析】
(1)根据“SAS”证明△ADE≌△CDE即可;
(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.
(1)
证明:∵四边形ABCD是正方形,
∴AD=CD,∠ADE=∠CDE,
在△ADE和△CDE中
,
∴△ADE≌△CDE,
∴AE=CE;
(2)
AE2+ GF2=EG2,理由:
连接CG
∵△ADE≌△CDE,
∴∠1=∠2.
∵G为FH的中点,
∴CG=GF=GH=FH,
∴∠6=∠7.
∵∠5=∠6,
∴∠5=∠7.
∵∠1+∠5=90°,
∴∠2+∠7=90°,即∠ECG=90°,
在Rt△CEG中,CE2+CG2=EG2,
∴AE2+ GF2=EG2.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.
3、 11 见解析
【解析】
【分析】
(1)直接利用勾股定理求出即可;
(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
【详解】
解:(1)AC2+BC2=()2+32=11;
故答案为:11;
(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
【点睛】
本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)利用尺规作出图形即可.
(2)利用全等三角形的性质证明即可.
(1)
解:如图,直线EF即为所求作.
.
(2)
证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,
∵EF为BD的垂直平分线,
∴∠EOD=∠FOB=90°,OB=OD,
在△EOD与△FOB中,
,
∴△EOD≌△FOB(ASA),
∴ED=BF,
∴AD-ED=BC-BF,即AE=CF.
【点睛】
本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
5、 (1)见解析
(2)
【解析】
【分析】
(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;
(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.
(1)
∵BE=CF,
∴BE+CE=CF+CE,即BC=EF,
∵ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD=EF,
∵AD∥EF,
∴四边形AEFD为平行四边形,
∵AE⊥BC,
∴∠AEF=90°,
∴四边形AEFD为矩形.
(2)
∵四边形AEFD为矩形,
∴AF=DE=4,DF=AE,
∵,,,
∴AB2+AF2=BF2,
∴△BAF为直角三角形,∠BAF=90°,
∴,
∴AE=,
∴.
【点睛】
本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共18页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学第二十二章 四边形综合与测试复习练习题,共24页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试课后复习题,共32页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。