初中数学冀教版八年级下册第二十二章 四边形综合与测试精练
展开这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精练,共24页。试卷主要包含了下列命题是真命题的有个.,下列说法不正确的是,如图,菱形的对角线等内容,欢迎下载使用。
八年级数学下册第二十二章四边形必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有( )个.
①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.
A.1 B.3 C.4 D.5
2、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为( )
A.12° B.24° C.39° D.45°
3、如图,点D,E分别是△ABC边BA,BC的中点,AC=3,则DE的长为( )
A.2 B. C.3 D.
4、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
5、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是( )
A.4m B.8m C.16m D.20m
6、下列命题是真命题的有( )个.
①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.
A.1 B.2 C.3 D.4
7、下列说法不正确的是( )
A.矩形的对角线相等
B.直角三角形斜边上的中线等于斜边的一半
C.对角线互相垂直且相等的四边形是正方形
D.菱形的对角线互相垂直
8、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )
A.4 B.6 C.8 D.12
9、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )
A.80° B.90° C.100° D.110°
10、正方形具有而矩形不一定具有的性质是( )
A.四个角相等 B.对角线互相垂直
C.对角互补 D.对角线相等
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、三角形的中位线______于三角形的第三边,并且等于第三边的______.
数学表达式:如图,
∵AD=BD,AE=EC,
∴DE∥BC,且DE=BC.
2、如图所示,过六边形的顶点的所有对角线可将六边形分成_______个三角形.
3、如图,正方形ABCD的边长为,作正方形A1B1C1D1,使A,B,C,D是正方形A1B1C1D1,各边的中点;做正方形A2B2C2D2,使A1,B1,C1,D1是正方形A2B2C2D2各边的中点…以此类推,则正方形A2021B2021C2021D2021的边长为 _____.
4、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.
5、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.
(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
2、已知:线段m.
求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
3、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.
(1)直接写出点的坐标____________________;
(2)求、两点的坐标.
4、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD、DF的长;
(2)如图①,连接EF,求证四边形AEFD是平行四边形;
(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
5、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.
(1)求证:四边形AEFD为矩形;
(2)若,,,求DF的长.
-参考答案-
一、单选题
1、C
【解析】
【分析】
证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.
【详解】
解:∵BH⊥AE,AF⊥BC,AE⊥EM,
∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,
∴∠NBF=∠EAF=∠MEC,
在△NBF和△EAF中,,
∴△NBF≌△EAF(AAS);
∴BF=AF,NF=EF,
∴∠ABC=45°,∠ENF=45°,
∴△NFE是等腰直角三角形,故③正确;
∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,
∴∠ANB=∠CEA,
在△ANB和△CEA中,,
∴△ANB≌△CEA(SAS),故①正确;
∵AN=CE,NF=EF,
∴BF=AF=FC,
又∵AF⊥BC,∠ABC=45°,
∴△ABC是等腰直角三角形,故②正确;
在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,
∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,
∴∠ANE=∠BCD=135°,
在△ANE和△ECM中,,
∴△ANE≌△ECM(ASA),故④正确;
∴CM=NE,
又∵NF=NE=MC,
∴AF=MC+EC,
∴AD=BC=2AF=MC+2EC,故⑤错误.
综上,①②③④正确,共4个,
故选:C.
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
2、C
【解析】
【分析】
由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.
【详解】
解:折叠,
是矩形
故选:C.
【点睛】
本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.
3、D
【解析】
略
4、D
【解析】
略
5、C
【解析】
【分析】
根据三角形中位线定理即可求出.
【详解】
解:中,、分别是、的中点,
为三角形的中位线,
,
,
故选:C.
【点睛】
本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
6、B
【解析】
【分析】
根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.
【详解】
解:①一组对边相等的四边形不一定是矩形,错误;
②两条对角线相等的平行四边形是矩形,错误;
③四条边都相等且对角线互相垂直的四边形是菱形,错误;
④四条边都相等的四边形是菱形,正确;
⑤一组邻边相等的矩形是正方形,正确.
故选:B.
【点睛】
此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.
7、C
【解析】
【分析】
利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
【详解】
解;矩形的对角线相等,故选项A不符合题意;
直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
菱形的对角线互相垂直,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
8、B
【解析】
【分析】
根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.
【详解】
解:四边形为菱形,
,,,
,
,
∴,
∴,
∴
故选:.
【点睛】
此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.
9、B
【解析】
【分析】
根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.
【详解】
解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,
又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,
∴∠EBD=∠A′BE+∠DBC′=180°×=90°.
故选B.
【点睛】
此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
10、B
【解析】
略
二、填空题
1、 平行 一半
【解析】
略
2、4
【解析】
【分析】
从边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成个三角形,依此作答.
【详解】
解:过六边形的顶点的所有对角线可将六边形分成个三角形.
故答案为4.
【点睛】
本题主要考查多边形的对角线,从边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为.
3、
【解析】
【分析】
根据勾股定理求得正方形对角线的长度,然后结合三角形中位线定理求得正方形的边长,从而探索数字变化的规律,进而求解.
【详解】
由题意得,正方形ABCD中
CD=AD=
在Rt△ACD中,
AC==2
∵A,B,C,D是正方形各边的中点,
∴正方形的边长为2=
在Rt△中
==2
∵是正方形各边中点
∴正方形的边长为2=
以此类推
则正方形的边长为
故答案为:
【点睛】
本题考查勾股定理,正方形性质,探索数字变化的规律是解题关键.
4、(-2,-8)
【解析】
【分析】
由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.
【详解】
,
四边形ABCD为菱形,
,,
即,,
,
.
设 则,
,即,
,
解得(舍去)
.
在轴上,,即轴,则轴,
.
【点睛】
本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.
5、3
【解析】
【分析】
由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案
【详解】
解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,
∵正方形ABCD边长为6,O为正方形中心,
∴AE=3,∠OAE=45°,OE⊥AB,
∴OE=3,
∵OP=6,
∴d=PE=6-3=3;
故答案为:3
【点睛】
本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
(1)
解:如图,作∠DAE的角平分线,与DC的交点即为所求.
∵AE=AD,∠EAF=∠DAF,AF=AF,
∴△AEF≌△ADF,
∴∠AEF=∠D=90°,
∴∠DAE+∠DFE=180°,
∵∠EFC+∠DFE=180°,
∴∠EFC=∠DAE,
∵在矩形ABCD中,AD∥BC,
∴∠BEA=∠DAE,
∴∠EFC=∠BEA;
(2)
解:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
∵AE=AD=5,
∴BE===3,
∴EC=BC﹣BE=5﹣3=2,
由(1)得:△AEF≌△ADF,
∴ ,
在 中, ,
∴ ,
∴ .
【点睛】
本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
2、见详解
【解析】
【分析】
先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
【详解】
解:先作m的垂直平分线,取m的一半为AB,
以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
过A作BC的平行线,与过C作AB的平行线交于D,
则四边形ABCD为所求作矩形;
∵AD∥BC,CD∥AB,
∴四边形ABCD为平行四边形,
∵BC⊥AB,
∴∠ABC=90°,
∴四边形ABCD为矩形,
∵AB=,AC=m,
∴矩形的宽与对角线满足条件,
∴四边形ABCD为所求作矩形.
【点睛】
本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
3、 (1)(10,8)
(2)D(0,5),E(4,8)
【解析】
【分析】
(1)根据,,可得点的坐标;
(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
(1)
解:∵,,
∴点的坐标(10,8),
故答案为:(10,8);
(2)
解:依题意可知,折痕AD是四边形OAED的对称轴,
在Rt△ABE中,AE=AO=10,AB=OC=8,
由勾股定理,得BE= =6,
CE=BC-BE=10-6=4,E(4,8).
在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
又∵DE=OD,CD=8-OD,
(8-OD)2+42=OD2,
解得OD=5,D(0,5).
所以D(0,5),E(4,8);
【点睛】
本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
4、 (1)AE=t,AD=12﹣2t,DF=t
(2)见解析
(3)3,理由见解析
【解析】
【分析】
(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
(2)根据对边平行且相等的四边形是平行四边形证明;
(3)根据矩形的定义列出方程,解方程即可.
(1)
解:由题意得,AE=t,CD=2t,
则AD=AC﹣CD=12﹣2t,
∵DF⊥BC,∠C=30°,
∴DF=CD=t;
(2)
解:∵∠ABC=90°,DF⊥BC,
∴,
∵AE=t,DF=t,
∴AE=DF,
∴四边形AEFD是平行四边形;
(3)
解:当t=3时,四边形EBFD是矩形,
理由如下:∵∠ABC=90°,∠C=30°,
∴AB=AC=6cm,
∵,
∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
解得,t=3,
∵∠ABC=90°,
∴四边形EBFD是矩形,
∴t=3时,四边形EBFD是矩形.
【点睛】
此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
5、 (1)见解析
(2)
【解析】
【分析】
(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;
(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.
(1)
∵BE=CF,
∴BE+CE=CF+CE,即BC=EF,
∵ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD=EF,
∵AD∥EF,
∴四边形AEFD为平行四边形,
∵AE⊥BC,
∴∠AEF=90°,
∴四边形AEFD为矩形.
(2)
∵四边形AEFD为矩形,
∴AF=DE=4,DF=AE,
∵,,,
∴AB2+AF2=BF2,
∴△BAF为直角三角形,∠BAF=90°,
∴,
∴AE=,
∴.
【点睛】
本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
相关试卷
这是一份数学八年级下册第二十二章 四边形综合与测试随堂练习题,共22页。
这是一份数学八年级下册第二十二章 四边形综合与测试测试题,共25页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。
这是一份初中冀教版第二十二章 四边形综合与测试同步训练题,共26页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。