搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版八年级数学下册第二十二章四边形难点解析试题(名师精选)

    2021-2022学年度冀教版八年级数学下册第二十二章四边形难点解析试题(名师精选)第1页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形难点解析试题(名师精选)第2页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形难点解析试题(名师精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学冀教版第二十二章 四边形综合与测试巩固练习

    展开

    这是一份数学冀教版第二十二章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列命题不正确的是,已知等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )
    A.3cmB.4cmC.4.8cmD.5cm
    2、下列说法正确的是( )
    A.只有正多边形的外角和为360°
    B.任意两边对应相等的两个直角三角形全等
    C.等腰三角形有两条对称轴
    D.如果两个三角形一模一样,那么它们形成了轴对称图形
    3、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是( )
    A.长度为的线段B.边长为2的等边三角形
    C.斜边为2的直角三角形D.面积为4的菱形
    4、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )
    A.8B.10C.12D.16
    5、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于( )
    A.B.C.D.
    6、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形B.对角线互相垂直且相等的四边形是菱形
    C.对角线相等的四边形是矩形D.有一个角为直角的四边形是矩形
    7、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    8、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )
    A.菱形B.矩形C.直角梯形D.等腰梯形
    9、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为( )
    A.120°B.60°C.30°D.15°
    10、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )
    A.1B.4C.2D.6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.
    2、如图,在中,,D为外一点,使,E为BD的中点若,则__________.
    3、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.
    4、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
    5、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.
    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.
    2、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算AC2+BC2的值等于_____;
    (2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
    3、尺规作图并回答问题:(保留作图痕迹)
    已知:如图,四边形ABCD是平行四边形.
    求作:菱形AECF,使点E,F分别在BC,AD上.
    请回答:在你的作法中,判定四边形AECF是菱形的依据是 .
    4、如图,▱ABCD中,E为BC边的中点,求证:DC=CF.
    5、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.
    (1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
    (2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴BD⊥AC,
    ∵BD=6cm,S菱形ABCD═AC×BD=24cm2,
    ∴AC=8cm,
    ∵AE⊥BC,
    ∴∠AEC=90°,
    ∴OE=AC=4cm,
    故选:B.
    【点睛】
    本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.
    2、B
    【解析】
    【分析】
    选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.
    【详解】
    解:A.所有多边形的外角和为,故本选项不合题意;
    B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;
    C.等腰三角形有1条对称轴,故本选项不合题意;
    D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;
    故选:B.
    【点睛】
    此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.
    3、D
    【解析】
    【分析】
    先计算出正方形的对角线长,即可逐项进行判定求解.
    【详解】
    解:A、正方形的边长为2,
    对角线长为,
    长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;
    B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
    C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
    D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,
    故选:D.
    【点睛】
    本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.
    4、A
    【解析】
    【分析】
    根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
    【详解】
    解:①在长方形纸片ABCD中,AB=12,AD=20,
    ∴BC=AD=20,
    当p与B重合时,BA′=BA=12,
    CA′=BC-BA′=20-12=8,
    ②当Q与D重合时,
    由折叠得A′D=AD=20,
    由勾股定理,得
    CA′==16,
    CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
    故选:A.
    【点睛】
    本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
    5、B
    【解析】
    【分析】
    设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.
    【详解】
    ∵,
    ∴AB=2BC,
    又∵点D,E分别是AB,BC的中点,
    ∴设BE=x,则EC=x,AD=BD=2x,
    ∵四边形ABGF是正方形,
    ∴∠ABF=45°,
    ∴△BDH是等腰直角三角形,
    ∴BD=DH=2x,
    ∴S1=DH•AD=,即2x•2x=,
    ∴x2=,
    ∵BD=2x,BE=x,
    ∴S2=MH•BD=(3x−2x)•2x=2x2,
    S3=EN•BE=x•x=x2,
    ∴S2+S3=2x2+x2=3x2=,
    故选:B.
    【点睛】
    本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.
    6、A
    【解析】
    【分析】
    根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
    【详解】
    解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
    B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
    C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
    D、有三个角是直角的四边形是矩形,所以该选项不正确.
    故选:A.
    【点睛】
    本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
    7、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    8、B
    【解析】
    【分析】
    先证明四边形ADCF是平行四边形,再证明AC=DF即可.
    【详解】
    解:∵E是AC中点,
    ∴AE=EC,
    ∵DE=EF,
    ∴四边形ADCF是平行四边形,
    ∵AD=DB,AE=EC,
    ∴DE=BC,
    ∴DF=BC,
    ∵CA=CB,
    ∴AC=DF,
    ∴四边形ADCF是矩形;
    故选:B.
    【点睛】
    本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.
    9、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    10、C
    【解析】

    二、填空题
    1、
    【解析】
    【分析】
    根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
    【详解】
    解:当y=0时,有x-1=0,
    解得:x=1,
    ∴点A1的坐标为(1,0).
    ∵四边形A1B1C1O为正方形,
    ∴点B1的坐标为(1,1).
    同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
    ∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
    ∴Bn(2n-1,2n-1)(n为正整数),
    故答案为:
    【点睛】
    本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
    2、##30度
    【解析】
    【分析】
    延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.
    【详解】
    解:延长BC、AD交于F,
    在△ABC和△AFC中

    ∴△ABC≌△AFC(ASA),
    ∴BC=FC,
    ∴C为BF的中点,
    ∵E为BD的中点,
    ∴CE为△BDF的中位线,
    ∴CE//AF,
    ∴∠ACE=∠CAF,
    ∵∠ACB=90°,∠ABC=60°,
    ∴∠BAC=30°,
    ∴∠ACE=∠CAF=∠BAC=30°,
    故答案为:30°.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.
    3、3.6##
    【解析】
    【分析】
    首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AD,∠B=∠D=90°,
    ∵将AB边沿AE折叠到AF,
    ∴AB=AF,∠B=∠AFB=90°,
    在Rt△ABE和Rt△AFB中,

    ∴Rt△ABE≌Rt△AFB(HL),
    ∴BE=EF,
    同理可得:DG=FG,
    ∵点G恰为CD边中点,
    ∴DG=FG=3,
    设BE=x,则CE=6﹣x,EG=3+x,
    在Rt△CEG中,由勾股定理得:
    (x+3)2=32+(6﹣x)2,
    解得x=2,
    ∴BE=EF=2,CE=4,
    ∴S△CEG=×4×3=6,
    ∵EF∶FG=2∶3,
    ∴S△EFC=×6=,
    ∴S△AFC=S△AEC﹣S△AEF﹣S△EFC
    =×4×6﹣×2×6﹣
    =12﹣6﹣
    =3.6.
    故答案为:3.6.
    【点睛】
    本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.
    4、49
    【解析】
    【分析】
    延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
    【详解】
    如图,延长FE交AB于点M,则,,
    ∵四边形ABCD是正方形,
    ∴,
    ∴是等腰直角三角形,
    ∴,
    在中,,
    ∴,
    ∴.
    故答案为:49.
    【点睛】
    本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
    5、(-,1)
    【解析】
    【分析】
    首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
    【详解】
    解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
    则∠ODC=∠AEO=90°,
    ∴∠OCD+∠COD=90°,
    ∵四边形OABC是正方形,
    ∴OC=OA,∠AOC=90°,
    ∴∠COD+∠AOE=90°,
    ∴∠OCD=∠AOE,
    在△AOE和△OCD中,

    ∴△AOE≌△OCD(AAS),
    ∴CD=OE=1,OD=AE=,
    ∴点C的坐标为:(-,1).
    故答案为:(-,1).
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.
    三、解答题
    1、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,
    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
    2、 11 见解析
    【解析】
    【分析】
    (1)直接利用勾股定理求出即可;
    (2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
    【详解】
    解:(1)AC2+BC2=()2+32=11;
    故答案为:11;
    (2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
    延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
    【点睛】
    本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
    3、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
    【解析】
    【分析】
    根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.
    【详解】
    解:如图,四边形AECF即为所求作.
    理由:四边形ABCD是平行四边形,
    ∴AE∥CF,
    ∴∠EAO=∠FCO,
    ∵EF垂直平分线段AC,
    ∴OA=OC,
    在△AEO和△CFO中,

    ∴△AEO≌△CFO(ASA),
    ∴AE=CF,
    ∴四边形AECF是平行四边形,
    ∵EA=EC或AC⊥EF,
    ∴四边形AECF是菱形.
    故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
    【点睛】
    本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    4、见解析
    【解析】
    【分析】
    根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∴∠BAE=∠CFE;
    ∵E为BC中点,
    ∴EB=EC,
    在△ABE与△FCE中,

    ∴△ABE≌△FCE(AAS),
    ∴AB=CF,
    ∴DC=CF.
    【点睛】
    本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
    (2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
    (1)
    解:如图,作∠DAE的角平分线,与DC的交点即为所求.
    ∵AE=AD,∠EAF=∠DAF,AF=AF,
    ∴△AEF≌△ADF,
    ∴∠AEF=∠D=90°,
    ∴∠DAE+∠DFE=180°,
    ∵∠EFC+∠DFE=180°,
    ∴∠EFC=∠DAE,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠BEA=∠DAE,
    ∴∠EFC=∠BEA;
    (2)
    解:∵四边形ABCD是矩形,
    ∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
    ∵AE=AD=5,
    ∴BE===3,
    ∴EC=BC﹣BE=5﹣3=2,
    由(1)得:△AEF≌△ADF,
    ∴ ,
    在 中, ,
    ∴ ,
    ∴ .
    【点睛】
    本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试习题,共27页。

    数学第二十二章 四边形综合与测试精练:

    这是一份数学第二十二章 四边形综合与测试精练,共23页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试课堂检测:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试课堂检测,共28页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map