2020年珠海市中考数学一模试题(含答案)
展开2020年珠海市中考数学一模试题(含答案)
一、选择题
1.下列各式中能用完全平方公式进行因式分解的是( )
A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+9
2.在△ABC中(2cosA-)2+|1-tanB|=0,则△ABC一定是( )
A.直角三角形 B.等腰三角形
C.等边三角形 D.等腰直角三角形
3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )
A.中位数 B.平均数 C.众数 D.方差
4.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
A.24 B.18 C.12 D.9
5.将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A. B. C. D.
6.点 P(m + 3,m + 1)在x轴上,则P点坐标为( )
A.(0,﹣2) B.(0,﹣4) C.(4,0) D.(2,0)
7.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )
A.3.5 B.3 C.4 D.4.5
8.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,
OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )
A.(-2,3) B.(2,-3) C.(3,-2)或(-2,3) D.(-2,3)或(2,-3)
9.已知直线,将一块含角的直角三角板按如图方式放置(),其中,两点分别落在直线,上,若,则的度数为( )
A. B. C. D.
10.如果,则a的取值范围是( )
A. B. C. D.
11.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,,.若S=3,则的值为( )
A.24 B.12 C.6 D.3
12.均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的( )
A. B. C. D.
二、填空题
13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.
14.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图像上,则菱形的面积为_______.
15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.
17.当____________时,解分式方程会出现增根.
18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
19.计算:=________.
20.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.
三、解答题
21.先化简,再求值:,其中.
22.如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.
(1)求m,k,n的值;
(2)求△ABC的面积.
23.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.
求证:BC=ED.
24.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.
(1)甲组抽到A小区的概率是多少;
(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.
25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.
(1)求证:四边形BEDF为菱形;
(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;
B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;
C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;
D、x2﹣6x+9=(x﹣3)2,故选项正确.
故选D.
2.D
解析:D
【解析】
【分析】
根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A、∠B的度数,根据直角三角形的判定,可得答案.
【详解】
解:由(2cosA-)2+|1-tanB|=0,得
2cosA=,1-tanB=0.
解得∠A=45°,∠B=45°,
则△ABC一定是等腰直角三角形,
故选:D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3.A
解析:A
【解析】
【分析】
根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.
【详解】
去掉一个最高分和一个最低分对中位数没有影响,故选A.
【点睛】
考查了统计量的选择,解题的关键是了解中位数的定义.
4.A
解析:A
【解析】
【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
【详解】∵E是AC中点,
∵EF∥BC,交AB于点F,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长是4×6=24,
故选A.
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
5.A
解析:A
【解析】
【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.
【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,
故选A.
【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.
6.D
解析:D
【解析】
【分析】
根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.
【详解】
解:因为点 P(m + 3,m + 1)在x轴上,
所以m+1=0,解得:m=-1,
所以m+3=2,
所以P点坐标为(2,0).
故选D.
【点睛】
本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.
7.B
解析:B
【解析】
【分析】
【详解】
解:∵∠ACB=90°,∠ABC=60°,
∴∠A=30°,
∵BD平分∠ABC,
∴∠ABD=∠ABC=30°,
∴∠A=∠ABD,
∴BD=AD=6,
∵在Rt△BCD中,P点是BD的中点,
∴CP=BD=3.
故选B.
8.D
解析:D
【解析】
如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一
条直线上,那么这两个图形叫做位似图形。把一个图形变换成与之位似的图形是位似变换。因此,
∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC。
∵矩形OA′B′C′的面积等于矩形OABC面积的,∴位似比为:。
∵点B的坐标为(-4,6),∴点B′的坐标是:(-2,3)或(2,-3)。故选D。
9.B
解析:B
【解析】
【分析】
根据平行线的性质判断即可得出结论.
【详解】
解:直线,
,
,,,
,
故选:.
【点睛】
本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.
10.B
解析:B
【解析】
试题分析:根据二次根式的性质1可知:,即故答案为B..
考点:二次根式的性质.
11.B
解析:B
【解析】
【分析】
【详解】
过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,
∴四边形PQCD与四边形APQB都为平行四边形,
∴△PDC≌△CQP,△ABP≌△QPB,
∴S△PDC=S△CQP,S△ABP=S△QPB,
∵EF为△PCB的中位线,
∴EF∥BC,EF=BC,
∴△PEF∽△PBC,且相似比为1:2,
∴S△PEF:S△PBC=1:4,S△PEF=3,
∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP==12.
故选B.
12.D
解析:D
【解析】
【分析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.
【详解】
根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;
故选D.
【点睛】
此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.
二、填空题
13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半
解析:2
【解析】
分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.
详解:扇形的圆心角是120°,半径为6,
则扇形的弧长是:=4π,
所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,
设圆锥的底面半径是r,
则2πr=4π,
解得:r=2.
所以圆锥的底面半径是2.
故答案为2.
点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.
14.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4
解析:4
【解析】
【分析】
【详解】
解:连接AC交OB于D.
∵四边形OABC是菱形,
∴AC⊥OB.
∵点A在反比例函数y=的图象上,
∴△AOD的面积=×2=1,
∴菱形OABC的面积=4×△AOD的面积=4
故答案为:4
15.【解析】根据弧长公式可得:=故答案为
解析:
【解析】
根据弧长公式可得:=,
故答案为.
16.【解析】【分析】设D(x2)则E(x+21)由反比例函数经过点DE列出关于x的方程求得x的值即可得出答案【详解】解:设D(x2)则E(x+21)∵反比例函数在第一象限的图象经过点D点E∴2x=x+2
解析:
【解析】
【分析】
设D(x,2)则E(x+2,1),由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.
【详解】
解:设D(x,2)则E(x+2,1),
∵反比例函数在第一象限的图象经过点D、点E,
∴2x=x+2,
解得x=2,
∴D(2,2),
∴OA=AD=2,
∴
故答案为:
【点睛】
本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.
17.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2
解析:2
【解析】
分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.
详解:分式方程可化为:x-5=-m,
由分母可知,分式方程的增根是3,
当x=3时,3-5=-m,解得m=2,
故答案为:2.
点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
18.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-
解析:
【解析】
【分析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
【详解】
列表如下:
| -2 | -1 | 1 | 2 |
-2 |
| 2 | -2 | -4 |
-1 | 2 |
| -1 | -2 |
1 | -2 | -1 |
| 2 |
2 | -4 | -2 | 2 |
|
由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
∴积为大于-4小于2的概率为=,
故答案为.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
19.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛
解析:
【解析】
【分析】
先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.
【详解】
原式=÷
=·
=.
故答案为.
【点睛】
本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.
20.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式
解析:.
【解析】
【分析】
【详解】
试题分析:画树状图如下:
∴P(两次摸到同一个小球)==.故答案为.
考点:列表法与树状图法;概率公式.
三、解答题
21.,.
【解析】
试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=代入化简后的式子,即可解答本题.
试题解析:原式==;
当a=时,原式===.
考点:整式的混合运算—化简求值.
22.(1) m=4,k=8,n=4;(2)△ABC的面积为4.
【解析】
试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;
(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.
试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,
∴OC=2,AC⊥y轴,
∵OD=OC,
∴OD=1,
∴CD=3,
∵△ACD的面积为6,
∴CD•AC=6,
∴AC=4,即m=4,
则点A的坐标为(4,2),将其代入y=可得k=8,
∵点B(2,n)在y=的图象上,
∴n=4;
(2)如图,过点B作BE⊥AC于点E,则BE=2,
∴S△ABC=AC•BE=×4×2=4,
即△ABC的面积为4.
考点:反比例函数与一次函数的交点问题.
23.见解析
【解析】
【分析】
首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.
【详解】
证明:∵AB∥CD,
∴∠BAC=∠ECD,
∵在△BAC和△ECD中,
AB=EC,∠BAC=∠ECD ,AC=CD,
∴△BAC≌△ECD(SAS).
∴CB=ED.
【点睛】
本题考查了平行线的性质,全等三角形的判定和性质.
24.(1)甲组抽到A小区的概率是;(2)甲组抽到A小区,同时乙组抽到C小区的概率为.
【解析】
【分析】
(1)直接利用概率公式求解可得;
(2)画树状图列出所有等可能结果,根据概率公式求解可得.
【详解】
(1)甲组抽到A小区的概率是,
故答案为:.
(2)画树状图为:
共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,
∴甲组抽到A小区,同时乙组抽到C小区的概率为.
【点睛】
此题考查列表法与树状图法,解题关键在于根据题意画出树状图.
25.(1)见解析;(2)24.
【解析】
【分析】
(1)根据平行四边形的和菱形的判定证明即可;
(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.
【详解】
证明:(1)∵DE∥BC,DF∥AB,
∴四边形BFDE是平行四边形,
∵BD是△ABC的角平分线,
∴∠EBD=∠DBF,
∵DE∥BC,
∴∠EDB=∠DBF,
∴∠EBD=∠EDB,
∴BE=ED,
∴平行四边形BFDE是菱形;
(2)连接EF,交BD于O,
∵∠BAC=90°,∠C=30°,
∴∠ABC=60°,
∵BD平分∠ABC,
∴∠DBC=30°,
∴BD=DC=12,
∵DF∥AB,
∴∠FDC=∠A=90°,
∴DF=,
在Rt△DOF中,OF=,
∴菱形BFDE的面积=×EF•BD=×12×4=24.
【点评】
此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.
2023年广东省珠海市金湾区中考数学一模试卷(含解析): 这是一份2023年广东省珠海市金湾区中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省珠海市香洲区紫荆中学中考数学一模试卷(含答案解析): 这是一份2023年广东省珠海市香洲区紫荆中学中考数学一模试卷(含答案解析),共23页。试卷主要包含了16×102B, 下列运算中,结果正确的是等内容,欢迎下载使用。
2023年广东省珠海市斗门区中考数学一模试卷: 这是一份2023年广东省珠海市斗门区中考数学一模试卷,共23页。试卷主要包含了0分, 下列运算正确的是等内容,欢迎下载使用。