初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题,共29页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
A.a B.a C.a D.a
2、下列命题错误的是( )
A.两组对边分别平行的四边形是平行四边形
B.两组对边分别相等的四边形是平行四边形
C.一组对边平行,另一组对边相等的四边形是平行四边形
D.对角线互相平分的四边形是平行四边形
3、下列命题是真命题的有( )个.
①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.
A.1 B.2 C.3 D.4
4、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
B.满足的三个数,,是勾股数
C.对角线相等的四边形各边中点连线所得四边形是矩形
D.五边形的内角和为
5、下列说法错误的是( )
A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角
C.矩形的对角线互相垂直 D.正方形有四条对称轴
6、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为( )
A. B. C. D.
7、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )
A.8 B.10 C.12 D.16
8、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1 B. C. D.2
9、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 ( )
A.5 B.6 C.8 D.10
10、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为( )
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=5,则AE=_____.
2、如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,且顶点B的坐标是(1,2),如果以O为圆心,OB长为半径画弧交x轴的正半轴于点P,那么点P的坐标是_______.
3、在任意△ABC中,取AB、AC边中点D、E,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的______.
一个三角形有______条中位线.
4、如图,四边形ABFE、AJKC、BCIH分别是以Rt△ABC的三边为一边的正方形,过点C作AB的垂线,交AB于点D,交FE于点G,连接HA、CF.欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:
①△ABH≌△FBC;
②正方形BCIH的面积=2△ABH的面积;
③矩形BFGD的面积=2△ABH的面积;
④BD2+AD2+CD2=BF2.
正确的有 ______.(填序号)
5、正方形的边长与它的对角线的长度的比值为_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知在与中,,点在同一直线上,射线分别平分.
(1)如图1,试说明的理由;
(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
(3)当时,求的度数.
2、如图,在矩形ABCD中,
(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.
(2)在(1)的条件下,求证:AE=CF.
3、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.
(1)直接写出点的坐标____________________;
(2)求、两点的坐标.
4、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.
①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
①方法1:一路往下数,不回头数.
以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
以OAn-1为边的锐角有∠An-1OAn,共有1个;
则图中锐角的总个数是 ;
②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
用两种不同的方法数锐角个数,可以得到等式 .
(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
①计算:19782+20222;
②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
5、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.
(1)如图1,若,,求CD的长;
(2)如图2,若G为EF上一点,且,求证:.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
【详解】
解:∵以△ABC的各边的中点为顶点作,
∴的周长的周长.
∵以各边的中点为顶点作,
∴的周长的周长,
…,
∴的周长
故选:A.
【点睛】
本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
2、C
【解析】
【分析】
根据平行四边形的判定逐项分析即可得.
【详解】
解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;
B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;
C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;
D、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,
故选:C.
【点睛】
本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.
3、B
【解析】
【分析】
根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.
【详解】
解:①一组对边相等的四边形不一定是矩形,错误;
②两条对角线相等的平行四边形是矩形,错误;
③四条边都相等且对角线互相垂直的四边形是菱形,错误;
④四条边都相等的四边形是菱形,正确;
⑤一组邻边相等的矩形是正方形,正确.
故选:B.
【点睛】
此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.
4、D
【解析】
【分析】
正确的命题是真命题,根据定义解答.
【详解】
解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
B. 满足的三个正整数,,是勾股数,故该项不符合题意;
C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
D. 五边形的内角和为,故该项符合题意;
故选:D.
【点睛】
此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
5、C
【解析】
【分析】
根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.
【详解】
解:A、平行四边形对边平行且相等,正确,不符合题意;
B、菱形的对角线平分一组对角,正确,不符合题意;
C、矩形的对角线相等,不正确,符合题意;
D、正方形有四条对称轴,正确,不符合题意;
故选:C.
【点睛】
本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.
6、A
【解析】
【分析】
设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
【详解】
解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,交于点,作ES⊥x轴于S,
∵AB∥DC,且AB=OD=OC=1,
∴四边形ABOD和四边形ABCO是平行四边形,
∴AD=OB,OA=BC,
∴AD+OA=OB+BC,
∵AE=AD,
∴AE+OA=OB+BC,
即OE=OB+BC,
∴OB+CB的最小值为OE,
由,
当时,,
解得:,
,
,
当时,,
,
,
,
取的中点,过作轴的垂线交于,
,
当时,,
,
,
,
为的中点,
,
为等边三角形,
,
,
,
,
∴FD=3,∠FDG=60°,
∴DG=DF=,
∴DE=2DG=3,
∴ES=DE=,DS=DE=,
∴OS=,
∴OE==,
∴OB+CB的最小值为,
故选:A.
【点睛】
本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OE是OB+CB的最小值.
7、A
【解析】
【分析】
根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
【详解】
解:①在长方形纸片ABCD中,AB=12,AD=20,
∴BC=AD=20,
当p与B重合时,BA′=BA=12,
CA′=BC-BA′=20-12=8,
②当Q与D重合时,
由折叠得A′D=AD=20,
由勾股定理,得
CA′==16,
CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
故选:A.
【点睛】
本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
8、D
【解析】
【分析】
由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°-∠BEF-∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3-x,
∴2(3-x)=x,
解得x=2.
故选:D.
【点睛】
本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
9、A
【解析】
【分析】
先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
【详解】
解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,
∴每个外角是:180°−108°=72°,
∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.
故选:A.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.
10、A
【解析】
【分析】
由正方形1性质和勾股定理得,再由,得,则,即可解决问题.
【详解】
解:设大正方形的边长为,
大正方形的面积是18,
,
,
,
,
,
小正方形的面积,
故选:A.
【点睛】
本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出.
二、填空题
1、5
【解析】
【分析】
依题意,可得DF是△ABC的中位线,得到BC的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;
【详解】
∵ D,F分别为AB,AC的中点,
∴DF是△ABC的中位线,
∴BC=2DF=10,
在Rt△ABC中,E为BC的中点,
故答案为:5.
【点睛】
本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;
2、(,0)
【解析】
【分析】
利用勾股定理求出OB的长度,同圆的半径相等即可求解.
【详解】
由题意可得:OP=OB,OC=AB=2,BC=OA=1,
∵OB===,
∴OP=,
∴点P的坐标为(,0).
故答案为:(,0).
【点睛】
本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.
3、 中位线 3
【解析】
略
4、①②③
【解析】
【分析】
由“SAS”可证△ABH≌△FBC,故①正确;由平行线间的距离处处相等,可得S△ABH=S△BCH=S正方形BCIH,故②正确;同理可证矩形BFGD的面积=2△ABH的面积,故③正确;由勾股定理可得BD2+AD2+2CD2=BF2,故④错误,即可求解.
【详解】
解:∵四边形ABFE和四边形CBHI是正方形,
∴AB=FB,HB=CB,∠ABF=∠CBH=90°,
∴∠CBF=∠HBA,
∴△ABH≌△FBC(SAS),故①正确;
如图,连接HC,
∵AI∥BH,
∴S△ABH=S△BCH=S正方形BCIH,
∴正方形BCIH的面积=2△ABH的面积,故②正确;
∵CG∥BF,
∴S△CBF=×BF×BD=S矩形BDGF,
∴矩形BFGD的面积=2△ABH的面积,故③正确;
∵BC2=CD2+DB2,AC2=CD2+AD2,BC2+AC2=AB2,
∴BD2+CD2+CD2+AD2=AB2=BF2,
∴BD2+AD2+2CD2=BF2,故④错误,
故答案为:①②③.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.
5、##
【解析】
【分析】
由正方形的性质得出,,,由勾股定理求出,即可得出正方形的边长与对角线长的比值.
【详解】
解:四边形是正方形,
,,,
,
;
故答案为:.
【点睛】
本题考查了正方形的性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.
三、解答题
1、 (1)理由见解析
(2),理由见解析
(3)
【解析】
【分析】
(1),,可知,进而可说明;
(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
,得;又由(1)中证明可知,,进而可得到结果;
(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
(1)
证明:
又
在和中
.
(2)
解:.
理由如下:如图1所示,连接并延长至点K
分别平分
则设
为的外角
同理可得
即
.
又由(1)中证明可知
由三角形内角和公式可得
即
.
(3)
解:当时,如图2所示,过点C作,则
,即
由(1)中证明可得
在中,根据三角形内角和定理有
即
即
即,解得:
故.
【点睛】
本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
2、 (1)见解析
(2)见解析
【解析】
【分析】
(1)利用尺规作出图形即可.
(2)利用全等三角形的性质证明即可.
(1)
解:如图,直线EF即为所求作.
.
(2)
证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,
∵EF为BD的垂直平分线,
∴∠EOD=∠FOB=90°,OB=OD,
在△EOD与△FOB中,
,
∴△EOD≌△FOB(ASA),
∴ED=BF,
∴AD-ED=BC-BF,即AE=CF.
【点睛】
本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
3、 (1)(10,8)
(2)D(0,5),E(4,8)
【解析】
【分析】
(1)根据,,可得点的坐标;
(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
(1)
解:∵,,
∴点的坐标(10,8),
故答案为:(10,8);
(2)
解:依题意可知,折痕AD是四边形OAED的对称轴,
在Rt△ABE中,AE=AO=10,AB=OC=8,
由勾股定理,得BE= =6,
CE=BC-BE=10-6=4,E(4,8).
在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
又∵DE=OD,CD=8-OD,
(8-OD)2+42=OD2,
解得OD=5,D(0,5).
所以D(0,5),E(4,8);
【点睛】
本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
4、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
【解析】
【分析】
(1)①根据边长为(a+b)的正方形面积公式求解即可;
②利用矩形和正方形的面积公式求解即可;
(2)①根据题中的数据求和即可;
②根据题意求解即可;
(3)①利用(1)的规律求解即可;
②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
【详解】
解:(1)①大正方形的面积为;
②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
可以得到等式:=;
故答案为:①;②;=;
(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
②锐角的总个数是n(n-1);
可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
(3)①19782+20222=[2000+(-22)]2+(2000+22)2
=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
=2×(20002+222)
=2×[4000000+(20+2)2]
=2×[4000000+(202+22+2×20×2)]=8000968;
②一个四边形共有2条对角线,即×4×(4-3)=2;
一个五边形共有5条对角线,即×5×(5-3)=5;
一个六边形共有9条对角线,即×6×(6-3)=9;
……,
一个十七边形共有×17×(17-3)=119条对角线;
一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
故答案为:119,n(n-3).
【点睛】
本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
5、 (1)7
(2)见解析
【解析】
【分析】
(1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
(1)
解:在中,AB∥CD,AB=CD,
∴∠EBF=∠CFB,
∵FB平分,
∴∠EFB=∠CFB,
∴∠EFB=∠EBF,
∴BE=EF=5,
∵AE=2,
∴CD=AB=AE+BE=7;
(2)
证明:如图,再CF上截取FN=FG,
∵,
∴ ,
∴∠BGF=∠BNF,
∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
∴∠BGF=∠BFN,
∴∠BFN=∠BNF,
∴∠BFD=∠BNC,
∵BC⊥BD,
∴∠CBD=90°,
∵∠BCD=45°,
∴∠BDC=∠BCD=45°,
∴BC=BD,
∴△BDF≌△BCN(AAS),
∴NC=FD,
∴CD=DF+FN+CN=2FD+FG,
∵AB=CD,
∴FG+2FD=AB.
【点睛】
本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共30页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
这是一份2020-2021学年第二十二章 四边形综合与测试优秀当堂达标检测题,共33页。
这是一份2020-2021学年第二十二章 四边形综合与测试精品课后复习题,共25页。试卷主要包含了下列命题错误的是,在中,若,则的度数是,已知锐角∠AOB,如图.等内容,欢迎下载使用。