搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练冀教版八年级数学下册第二十二章四边形同步测试练习题(精选)

    2022年强化训练冀教版八年级数学下册第二十二章四边形同步测试练习题(精选)第1页
    2022年强化训练冀教版八年级数学下册第二十二章四边形同步测试练习题(精选)第2页
    2022年强化训练冀教版八年级数学下册第二十二章四边形同步测试练习题(精选)第3页
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第二十二章 四边形综合与测试精品同步达标检测题

    展开

    这是一份初中数学第二十二章 四边形综合与测试精品同步达标检测题,共25页。
    八年级数学下册第二十二章四边形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法不正确的是(  )A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直2、菱形ABCD的边长为5,一条对角线长为6,则菱形面积为(  )A.20 B.24 C.30 D.483、将一长方形纸条按如图所示折叠,,则       A.55° B.70° C.110° D.60°4、如图,在中,于点DFBC上且,连接AFEAF的中点,连接DE,则DE的长为(       A.1 B.2 C.3 D.45、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是(       A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶26、若n边形每个内角都为156°,那么n等于(       A.8 B.12 C.15 D.167、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是(       A.5 B.6 C.7 D.88、如图,四边形ABCD是菱形,对角线ACBD交于点OE是边AD的中点,过点EEFBDEGAC,点FG为垂足,若AC=10,BD=24,则FG的长为(       A. B.8 C. D.9、正方形具有而矩形不一定具有的性质是(       A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等10、如图①,在ABCD中,动点P从点B出发,沿折线BCDB运动,设点P经过的路程为xABP的面积为yyx的函数,函数的图象如图②所示,则图②中的a值为(  )A.3 B.4 C.14 D.18第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为,作正方形A1B1C1D1,使ABCD是正方形A1B1C1D1,各边的中点;做正方形A2B2C2D2,使A1B1C1D1是正方形A2B2C2D2各边的中点…以此类推,则正方形A2021B2021C2021D2021的边长为 _____.2、如图,在矩形中,,点边上,联结.如果将沿直线翻折,点恰好落在线段上,那么 的值为_________.3、如图,在平行四边形ABCD中,(1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.(2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;(3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.4、如图,在矩形中,的角平分线于点,连接恰好平分,若,则的长为______.5、如图,在长方形中,分别在边上,且.现将四边形沿折叠,点的对应点分别为点,当点恰好落在边上时,则的长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交ADBCEF点,交BDO点.(2)在(1)的条件下,求证:AE=CF2、如图,在中,点DE分别是边的中点,过点A的延长线于F点,连接,过点D于点G(1)求证:四边形是平行四边形:(2)若①当___________时,四边形是矩形;②若四边形是菱形,则________.3、如图,在四边形ABCD中,ABAD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BDBC于点EF.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.4、如图,▱ABCD中,EBC边的中点,求证:DCCF5、如图,在菱形ABDE中,,点C是边AB的中点,点P是对角线AD上的动点(可与点AD重合),连接PCPB.已知,若要,求AP的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP长为xcm,PC长为PB长为.分别对函数随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了x的几组对应值,表格中的______;x/cm01234561.731.001.00a2.643.614.583.462.642.001.732.002.643.46(2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;(3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是____________;请根据图象估计当______时,PC取到最小值.(请保留点后两位) -参考答案-一、单选题1、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.2、B【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,ACBDAOCOBODO=3,AB=5,AO=4,AC=8,∴菱形的面积是:6×8÷2=24,故选:C.【点睛】本题主要考查菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.3、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.4、B【解析】【分析】先求出,再根据等腰三角形的三线合一可得点的中点,然后根据三角形中位线定理即可得.【详解】解:(等腰三角形的三线合一),即点的中点,的中点,的中位线,故选:B.【点睛】本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.5、D【解析】6、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.7、C【解析】【分析】根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.【详解】解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,而题目中从一个顶点引出4条对角线,n-3=4,得到n=7,∴这个多边形的边数是7.故选:C.【点睛】本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.8、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,ACBD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE∵四边形ABCD是菱形,OA=OC=5,OB=OD=12,ACBDRtAOD中,AD==13,又∵E是边AD的中点,OE=AD=×13=6.5,EFBDEGACACBD∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.9、B【解析】10、A【解析】【分析】由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出CBD高,进而求解.【详解】解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,过点BBHDC于点HCH=x,则DH=8-xBH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x2=62-x2解得:则:故选:A.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题1、【解析】【分析】根据勾股定理求得正方形对角线的长度,然后结合三角形中位线定理求得正方形的边长,从而探索数字变化的规律,进而求解.【详解】由题意得,正方形ABCDCD=AD=Rt△ACD中,AC==2ABCD是正方形各边的中点,∴正方形的边长为2=Rt△==2是正方形各边中点∴正方形的边长为2=       以此类推则正方形的边长为 故答案为:【点睛】本题考查勾股定理,正方形性质,探索数字变化的规律是解题关键.2、【解析】【分析】先根据翻折的性质得出AD′=AD=5,DP=PD′,,然后在RtABF中由勾股定理求出BD′=4,DC=1,设DP=x,则DP=x,PC=3-x,在RtCDP中,由勾股定理求出列方程求出x即可,然后利用三角形的面积公式求出SADP的面积即可.【详解】解:∵AB=3,BC=5,DC=3,AD=5,又∵将ADP折叠使点D恰好落在BC边上的点D′,AD′=AD=5,DP=PD′,RtABD′中,AB=3,AD′=5,BD′==4,DC=5-4=1,DP=x,则DP=xPC=3-xRtCDP中,DP2=DC2+PC2,即x2=12+(3-x2,解得x=DP的长为AD=5,SADP=×DP×AD=××5==3×5-==故答案为:【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,也考查了矩形的性质以及勾股定理.3、     50°     130°     50°     100°     80°     100°     80°【解析】4、【解析】【分析】根据矩形的性质得,根据BE的角平分线,得,则,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分,等量代换,所以,即可得.【详解】解:∵四边形ABCD为矩形,BE的角平分线,中,根据勾股定理得,EC平分故答案为:【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.5、4【解析】【分析】由勾股定理求出F,得到D,过点HABH,连接BF,则四边形是矩形,求出HE,过点FFGABG,则四边形BCFG是矩形,利用勾股定理求出的长.【详解】解:在长方形中,由折叠得5,13=2,过点HABH,连接BF,则四边形是矩形,AH=D=2,∵∠EF=∠BEF,∠FE=∠BEF∴∠EF=FEE=F=13,=5,过点FFGABG,则四边形BCFG是矩形,BG=FC=5,EG=13-5=8,=4故答案为4【点睛】此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作.(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBCEFBD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD在△EOD与△FOB中,∴△EOD≌△FOBASA),ED=BFAD-ED=BC-BF,即AE=CF【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、 (1)见解析;(2)①3;②【解析】【分析】(1)根据三角形中位线的性质得到DEABBD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;②根据菱形的性质得到DFAC,推出ABAC,利用勾股定理求出AC,得到CE,利用面积法求出答案.(1)证明:∵点D、E分别是边BC、AC的中点,DEABBD=CD∴四边形ABDF是平行四边形,AF=BD=CD∴四边形是平行四边形;(2)解:①∵点D、E分别是边BC、AC的中点,DE=AB∵四边形是平行四边形,DF=2DE=AB=3,∵四边形是矩形,AC=DF=3,故答案为:3;②∵四边形是菱形,DFACDEABABACAD=BC=2.5, AE=EC=2,故答案为:【点睛】此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.3、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DFAD//BC∴∠ADE=∠EBFAF垂直平分BDBE=DE在△ADE和△FBE中,∴△ADE≌△FBEASA),AE=EFBDAF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.4、见解析【解析】【分析】根据平行四边形的性质可得ABCDABCD,根据平行线的性质可得BAECFE,根据中点的定义可得EBEC,利用AAS可证明ABE≌△FCE,可得ABCF,进而可得结论【详解】∵四边形ABCD是平行四边形,ABCDABCD∴∠BAE=∠CFEEBC中点,EBEC在△ABE与△FCE中,∴△ABE≌△FCEAAS),ABCFDCCF【点睛】本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键5、 (1)(2)见解析(3)0≤AP≤3,1.50【解析】【分析】(1)证明△PAB为直角三角形,再根据勾股定理得出,而点C是线段AB的中点,即可求解;(2)描点绘出函数图象即可;(3)观察分析函数图象即可求解.(1)解:在菱形ABDE中,AB=BDAD=6x=AP=3时,则PAD的中点AB=2BP∵点C是边AB的中点,,即(2)描点绘出函数图象如下(0≤x≤6)(3)PC的长度不大于PB长度时,即y1y2,从图象看,此时,0≤x≤3,即0≤AP≤3,从图象看,当x大约为1.50时,y1PC取到最小值;故答案为:0≤AP≤3;1.50.【点睛】本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共30页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题,共29页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共30页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map