搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版八年级数学下册第二十二章四边形难点解析试题(无超纲)

    2021-2022学年最新冀教版八年级数学下册第二十二章四边形难点解析试题(无超纲)第1页
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形难点解析试题(无超纲)第2页
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形难点解析试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课堂检测

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课堂检测,共30页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
    A.2B.C.D.
    2、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
    A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
    B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
    C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
    D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
    3、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
    A.AO=COB.AD∥BCC.AD=BCD.∠DAC=∠ACD
    4、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )
    A.线段EF的长逐渐增大B.线段EF的长逐渐减小
    C.线段EF的长不改变D.线段EF的长不能确定
    5、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
    A.B.C.D.
    6、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
    A.7B.6C.4D.8
    7、若n边形每个内角都为156°,那么n等于( )
    A.8B.12C.15D.16
    8、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为( )
    A.120°B.60°C.30°D.15°
    9、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )
    A.测量对角线是否互相平分B.测量一组对角是否都为直角
    C.测量对角线长是否相等D.测量3个角是否为直角
    10、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为( )
    A.3B.4C.14D.18
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平行四边形ABCD中,对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为___.
    2、如图,在中,,D为外一点,使,E为BD的中点若,则__________.
    3、如图,在平面直角坐标系xOy中,有一边长为1的正方形OABC,点B在x轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则B2的坐标是 ___;B2020的坐标是 ___.
    4、已知菱形ABCD两条对角线的长分别为6和8,若另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,则菱形EFGH两条对角线的长分别是 _____.
    5、在Rt中,,CD是斜边AB上的中线,已知,,则的周长等于______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知平行四边形ABCD.
    (1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)
    (2)在(1)所作的图形中,证明四边形BEDF为平行四边形.
    2、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算AC2+BC2的值等于_____;
    (2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
    3、已知在与中,,点在同一直线上,射线分别平分.

    (1)如图1,试说明的理由;
    (2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
    (3)当时,求的度数.
    4、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.
    (1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
    (2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
    5、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴△ABD和△BCD是等腰直角三角形,
    如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
    由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
    ∴重叠部分的四边形D'EBF为平行四边形,
    设DD'=x,则D'C=6-x,D'E=x,
    ∴S▱D'EBF=D'E•D'C=(6-x)x=4,
    解得:x=3+或x=3-,
    故选:B.
    【点睛】
    本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
    2、D
    【解析】
    【分析】
    当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
    【详解】
    解:如图,连接当为各边中点时,可知分别为的中位线

    ∴四边形是平行四边形
    A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
    B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
    C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
    D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
    故选D.
    【点睛】
    本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
    3、D
    【解析】
    【分析】
    根据平行四边形的性质解答.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AO=OC,故A正确;
    ∴,故B正确;
    ∴AD=BC,故C正确;
    故选:D.
    【点睛】
    此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
    4、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据中位线定理,EF不变.
    【详解】
    解:连接AR.
    因为E、F分别是AP、RP的中点,
    则EF为的中位线,
    所以,为定值.
    所以线段的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    5、A
    【解析】
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.
    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    6、A
    【解析】
    【分析】
    如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
    【详解】
    解:如图所示,连接AC,OB交于点D,
    ∵C是直线与y轴的交点,
    ∴点C的坐标为(0,2),
    ∵OA=4,
    ∴A点坐标为(4,0),
    ∵四边形OABC是矩形,
    ∴D是AC的中点,
    ∴D点坐标为(2,1),
    当直线经过点D时,可将矩形OABC的面积平分,
    由题意得平移后的直线解析式为,
    ∴,
    ∴,
    故选A.
    【点睛】
    本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
    7、C
    【解析】
    【分析】
    首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.
    【详解】
    解:由题意可知:n边形每个外角的度数是:180°-156°=24°,
    则n=360°÷24°=15.
    故选:C.
    【点睛】
    本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.
    8、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    9、D
    【解析】
    【分析】
    矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.
    【详解】
    解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;
    B、测量一组对角是否都为直角,不能判定形状,故不符合题意;
    C、测量对角线长是否相等,不能判定形状,故不符合题意;
    D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;
    故选:D.
    【点睛】
    本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.
    10、A
    【解析】
    【分析】
    由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.
    【详解】
    解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,
    过点B作BH⊥DC于点H,
    设CH=x,则DH=8-x,
    则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,
    解得:
    则:,
    则,
    故选:A.
    【点睛】
    本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
    二、填空题
    1、4
    【解析】
    【分析】
    四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.
    【详解】
    解:∵四边形是平行四边形





    ∴设

    解得:


    故答案为:4.
    【点睛】
    本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.
    2、##30度
    【解析】
    【分析】
    延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.
    【详解】
    解:延长BC、AD交于F,
    在△ABC和△AFC中

    ∴△ABC≌△AFC(ASA),
    ∴BC=FC,
    ∴C为BF的中点,
    ∵E为BD的中点,
    ∴CE为△BDF的中位线,
    ∴CE//AF,
    ∴∠ACE=∠CAF,
    ∵∠ACB=90°,∠ABC=60°,
    ∴∠BAC=30°,
    ∴∠ACE=∠CAF=∠BAC=30°,
    故答案为:30°.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.
    3、
    【解析】
    【分析】
    根据已知条件和勾股定理求出OB2的长度即可求出B2的坐标,再根据题意和图形可看出每经过一次变化,正方形都逆时针旋转45°,正方形的边长都乘以所以可求出从B到B2020变化的坐标.
    【详解】
    解:∵四边形OABC是边长为1正方形,


    ∴B1的坐标是,
    ∴,
    ∴B2的坐标是
    根据题意和图形可看出每经过一次变化,正方形逆时针旋转45°,其边长乘以,
    ∴B3的坐标是
    ∴B4的坐标是
    ∴旋转8次则OB旋转一周,
    ∵从B到B2020经过了2020次变化,2020÷8=252…4,
    ∴从B到B2020与B4都在x轴负半轴上,
    ∴点B2020的坐标是
    【点睛】
    本题主要考查了规律型-点的坐标,解决本题的关键是利用正方形的变化过程寻找点的变化规律.
    4、,
    【解析】
    【分析】
    首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积,然后根据勾股定理即可得到结论.
    【详解】
    解:如图,菱形ABCD中,AC=8,BD=6,
    ∴OA=AC=4,OB=BD=3,AC⊥BD,
    ∴AB==5,
    ∴菱形ABCD的周长是:5×4=20,面积是:×6×8=24.
    ∵另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,
    ∴菱形EFGH的周长和面积分别是40,48,
    ∴菱形EFGH的边长是10,
    设菱形EFGH的对角线为2a,2b,
    ∴a2+b2=100,×2a×2b=48,
    ∴a=,b=,
    ∴菱形EFGH两条对角线的长分别是,,
    故答案为:2,.
    【点睛】
    本题考查了菱形的性质以及勾股定理.关键是熟练掌握菱形的面积等于对角线积的一半的知识点.
    5、##
    【解析】
    【分析】
    过点作,根据直角三角形斜边上的中线等于斜边的一半,可得,根据等腰三角形的三线合一可得,中位线的性质求得,根据勾股定理求得,继而求得的周长.
    【详解】
    解:如图,过点作
    在Rt中,,CD是斜边AB上的中线,
    为的中点,
    又为的中点,则
    在中,
    的周长等于
    故答案为:
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.
    三、解答题
    1、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;
    (2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.
    (1)
    如图,DE、BF为所作;
    (2)
    证明:∵四边形ABCD为平行四边形,
    ∴AD=BC,AB=CD,AD∥BC,
    ∵CE=CD,
    ∴CE=AB,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∵AFBC,
    ∴∠CBF=∠F,
    ∴∠ABF=∠F,
    ∴AB=AF,
    ∴CE=AF,即CB+BE=AD+DF,
    ∴BE=DF,
    ∵BEDF,
    ∴四边形BEDF为平行四边形.
    【点睛】
    本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.
    2、 11 见解析
    【解析】
    【分析】
    (1)直接利用勾股定理求出即可;
    (2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
    【详解】
    解:(1)AC2+BC2=()2+32=11;
    故答案为:11;
    (2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
    延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
    【点睛】
    本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
    3、 (1)理由见解析
    (2),理由见解析
    (3)
    【解析】
    【分析】
    (1),,可知,进而可说明;
    (2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
    ,得;又由(1)中证明可知,,进而可得到结果;
    (3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
    (1)
    证明:

    在和中

    (2)
    解:.
    理由如下:如图1所示,连接并延长至点K
    分别平分
    则设
    为的外角
    同理可得


    又由(1)中证明可知
    由三角形内角和公式可得


    (3)
    解:当时,如图2所示,过点C作,则
    ,即
    由(1)中证明可得
    在中,根据三角形内角和定理有


    即,解得:
    故.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
    (2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
    (1)
    解:如图,作∠DAE的角平分线,与DC的交点即为所求.
    ∵AE=AD,∠EAF=∠DAF,AF=AF,
    ∴△AEF≌△ADF,
    ∴∠AEF=∠D=90°,
    ∴∠DAE+∠DFE=180°,
    ∵∠EFC+∠DFE=180°,
    ∴∠EFC=∠DAE,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠BEA=∠DAE,
    ∴∠EFC=∠BEA;
    (2)
    解:∵四边形ABCD是矩形,
    ∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
    ∵AE=AD=5,
    ∴BE===3,
    ∴EC=BC﹣BE=5﹣3=2,
    由(1)得:△AEF≌△ADF,
    ∴ ,
    在 中, ,
    ∴ ,
    ∴ .
    【点睛】
    本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
    5、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试综合训练题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试综合训练题,共29页。试卷主要包含了如图,在正方形ABCD中,点E,如图,在中,DE平分,,则,下列命题是真命题的有个.等内容,欢迎下载使用。

    数学第二十二章 四边形综合与测试精品练习题:

    这是一份数学第二十二章 四边形综合与测试精品练习题,共30页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题,共33页。试卷主要包含了已知,下列说法错误的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map