2021学年第二十二章 四边形综合与测试精品课时练习
展开
这是一份2021学年第二十二章 四边形综合与测试精品课时练习,共26页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)2、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点B.满足的三个数,,是勾股数C.对角线相等的四边形各边中点连线所得四边形是矩形D.五边形的内角和为3、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )A. B. C. D.4、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )A.∠D=90° B.AB=CD C.AD=BC D.BC=CD5、下列命题是真命题的有( )个.①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.A.1 B.2 C.3 D.46、如图,五边形中,,CP,DP分别平分,,则( )A.60° B.72° C.70° D.78°7、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )A.1 B.4 C.2 D.68、能够判断一个四边形是矩形的条件是( )A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线垂直且相等9、小明想判断家里的门框是否为矩形,他应该( )A.测量三个角是否都是直角 B.测量对角线是否互相平分C.测量两组对边是否分别相等 D.测量一组对角是否是直角10、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于( )A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两组对边分别________的四边形叫做平行四边形.平行四边形不相邻的两个顶点连成的线段叫它的________.如图所示的四边形ABCD是平行四边形.记作:________,读作:平行四边形ABCD线段________、________就是平行四边形ABCD的对角线.平行四边形相对的边,称为 ________,相对的角称为________.对边:AB与CD;BC与DA.对角:∠ABC与∠CDA;∠BAD与∠DCB.2、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.3、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm2.4、如图,AC是正五边形ABCDE的对角线,则为______度.5、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.(1)若,则点,,的坐标分别是( ),( ),( );(2)若△是以为底的等腰三角形,①直接写出的值;②若直线与△有公共点,求的取值范围.(3)若直线与△有公共点,求的取值范围.2、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.(1)直接写出点的坐标____________________;(2)求、两点的坐标.3、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.(1)若∠BAE=50°,求∠DGF的度数;(2)求证:DF=DC.4、如图,在菱形ABDE中,,点C是边AB的中点,点P是对角线AD上的动点(可与点A,D重合),连接PC,PB.已知,若要,求AP的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP长为xcm,PC长为,PB长为.分别对函数,随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,表格中的______;x/cm01234561.731.001.00a2.643.614.583.462.642.001.732.002.643.46(2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;(3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是____________;请根据图象估计当______时,PC取到最小值.(请保留点后两位)5、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若,,,求DF的长. -参考答案-一、单选题1、B【解析】【分析】分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标【详解】如图,分别过点和点作轴于点,作轴于点,∴,∵四边形为菱形,∴点为的中点,∴点为的中点,∴,,∵,∴;由题意知菱形绕点逆时针旋转度数为:,∴菱形绕点逆时针旋转周,∴点绕点逆时针旋转周,∵,∴旋转60秒时点的坐标为.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.2、D【解析】【分析】正确的命题是真命题,根据定义解答.【详解】解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;B. 满足的三个正整数,,是勾股数,故该项不符合题意;C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;D. 五边形的内角和为,故该项符合题意;故选:D.【点睛】此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.3、A【解析】【分析】取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.【详解】解:如图,取OD的中点H,连接HP∵四边形ABCD是菱形∴AC⊥BD,AO=CO=4,OB=OD=6∵点H是OD中点,点E是OB的中点,点P是CD的中点∴OH=3,OE=3,,∴EH=6,在中,由勾股定理可得:∴故选:A【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.4、D【解析】略5、B【解析】【分析】根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.【详解】解:①一组对边相等的四边形不一定是矩形,错误;②两条对角线相等的平行四边形是矩形,错误;③四条边都相等且对角线互相垂直的四边形是菱形,错误;④四条边都相等的四边形是菱形,正确;⑤一组邻边相等的矩形是正方形,正确.故选:B.【点睛】此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.6、C【解析】【分析】根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.【详解】解:五边形的内角和等于,,,、的平分线在五边形内相交于点,,.故选:C.【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.7、C【解析】略8、C【解析】略9、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B、对角线互相平分的四边形是平行四边形,选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,选项C不符合题意;D、一组对角是直角的四边形不是矩形,选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.10、B【解析】【分析】根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.【详解】解:∵四边形ABCD为平行四边形,∴,∴,∵AE平分,∴,∴,∴,∵,∴,故选:B.【点睛】题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.二、填空题1、 平行 对角线 AC BD 对边 对角【解析】略2、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∴=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.3、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,..,根据勾股定理可知:..解得:.的面积为:.故答案为:.【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.4、72【解析】【分析】先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.【详解】解:五边形是正五边形,,,,故答案为:72.【点睛】本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.5、18°##18度【解析】【分析】由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD是正方形,∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CED=∠CEB=∠BED=63°,∵∠CED=∠CAD+∠ADE,∴∠ADE=63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.三、解答题1、 (1)-3,3,1,3,-3,-1(2)①-2;②(3)或【解析】【分析】(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.(1)解:,,,轴.以为对角线时,四边形是平行四边形,,,将向左平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,,,将向右平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,对角线的中点与的中点重合,的中点为,,.故答案为:,,;(2)解:①如图,若△是以为底的等腰三角形,四边形,,是平行四边形,,,,、、在同一直线上,、、在同一直线上,,是等腰三角形△的中位线,,,,,,,;②由①得,,.当直线过点时,,解得:,当直线过点时,,解得:,的取值范围为;(3)解:如图,,,,,.连接、交于点,四边形是平行四边形,点、关于点对称,,直线与△有公共点,当直线与△交于点,,解得:,时,直线与△有公共点;当直线与△交于点,,解得:,时,直线与△有公共点;综上,的取值范围为或.【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.2、 (1)(10,8)(2)D(0,5),E(4,8)【解析】【分析】(1)根据,,可得点的坐标;(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;(1)解:∵,,∴点的坐标(10,8),故答案为:(10,8);(2)解:依题意可知,折痕AD是四边形OAED的对称轴,在Rt△ABE中,AE=AO=10,AB=OC=8,由勾股定理,得BE= =6,CE=BC-BE=10-6=4,E(4,8).在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,又∵DE=OD,CD=8-OD,(8-OD)2+42=OD2,解得OD=5,D(0,5).所以D(0,5),E(4,8);【点睛】本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3、 (1)∠DGF=25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,∴∠BAE=∠DAG=50°,∴∠AGD=∠ADG==65°,∴∠DGF=90°-65°=25°;(2)证明:连接AF,由旋转得矩形AEFG≌矩形△ABCD,∴AF=BD,∠FAE=∠ABE=∠AEB,∴AF∥BD,∴四边形ABDF是平行四边形,∴DF=AB=DC.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.4、 (1)(2)见解析(3)0≤AP≤3,1.50【解析】【分析】(1)证明△PAB为直角三角形,再根据勾股定理得出,而点C是线段AB的中点,即可求解;(2)描点绘出函数图象即可;(3)观察分析函数图象即可求解.(1)解:在菱形ABDE中,AB=BD∵,∴,∵AD=6当x=AP=3时,则P为AD的中点∴,∴AB=2BP,,∴,∵点C是边AB的中点,∴,即(2)描点绘出函数图象如下(0≤x≤6)(3)当PC的长度不大于PB长度时,即y1≤y2,从图象看,此时,0≤x≤3,即0≤AP≤3,从图象看,当x大约为1.50时,y1即PC取到最小值;故答案为:0≤AP≤3;1.50.【点睛】本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.5、 (1)见解析(2)【解析】【分析】(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=EF,∵AD∥EF,∴四边形AEFD为平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD为矩形.(2)∵四边形AEFD为矩形,∴AF=DE=4,DF=AE,∵,,,∴AB2+AF2=BF2,∴△BAF为直角三角形,∠BAF=90°,∴,∴AE=,∴.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试练习,共32页。试卷主要包含了下列命题错误的是,下列说法不正确的是,下列命题不正确的是,如图,在正方形ABCD中,点E等内容,欢迎下载使用。
这是一份2020-2021学年第二十二章 四边形综合与测试精品课后复习题,共25页。试卷主要包含了下列命题错误的是,在中,若,则的度数是,已知锐角∠AOB,如图.等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀当堂达标检测题,共29页。试卷主要包含了下列说法错误的是,下列命题错误的是等内容,欢迎下载使用。