数学冀教版第二十二章 四边形综合与测试优秀达标测试
展开
这是一份数学冀教版第二十二章 四边形综合与测试优秀达标测试,共35页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
八年级数学下册第二十二章四边形章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为( )
A. B. C. D.
2、十边形中过其中一个顶点有( )条对角线.
A.7 B.8 C.9 D.10
3、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1 B. C. D.2
4、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )
A. B. C. D.
5、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
①;
②;
③四边形是平行四边形;
④图中共有四对全等三角形.
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
6、如图,平行四边形ABCD,∠BCD=120°,AB=2,BC=4,点E是直线BC上的点,点F是直线CD上的点,连接AF,AE,EF,点M,N分别是AF,EF的中点.连接MN,则MN的最小值为( )
A.1 B. C. D.
7、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
8、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )
A.14 B.16 C.18 D.12
9、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为( )
A.3 B.4 C.14 D.18
10、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为( )
A.1 B.2 C. D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平行四边形ABCD中,对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为___.
2、如图1,在平面直角坐标系xOy中,□ABCD的面积为10,且边AB在x轴上.如果将直线y=﹣x沿x轴正方向平移,在平移过程中,记该直线在x轴上平移的距离为m,直线被平行四边形的边所截得的线段的长度为n,且n与m的对应关系如图2所示,那么图2中a的值是 ___,b的值是 ___.
3、在Rt中,,CD是斜边AB上的中线,已知,,则的周长等于______.
4、如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=6,则GH的长为_________.
5、如图,矩形中,,,以点为中心,将矩形旋转得到矩形,使得点落在边上,则的度数为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.
2、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于_____;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
3、(1)【发现证明】
如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
(2)【类比引申】
①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
(3)【联想拓展】如图1,若正方形的边长为6,,求的长.
4、尺规作图并回答问题:(保留作图痕迹)
已知:如图,四边形ABCD是平行四边形.
求作:菱形AECF,使点E,F分别在BC,AD上.
请回答:在你的作法中,判定四边形AECF是菱形的依据是 .
5、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.
(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
(3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
【详解】
解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,交于点,作ES⊥x轴于S,
∵AB∥DC,且AB=OD=OC=1,
∴四边形ABOD和四边形ABCO是平行四边形,
∴AD=OB,OA=BC,
∴AD+OA=OB+BC,
∵AE=AD,
∴AE+OA=OB+BC,
即OE=OB+BC,
∴OB+CB的最小值为OE,
由,
当时,,
解得:,
,
,
当时,,
,
,
,
取的中点,过作轴的垂线交于,
,
当时,,
,
,
,
为的中点,
,
为等边三角形,
,
,
,
,
∴FD=3,∠FDG=60°,
∴DG=DF=,
∴DE=2DG=3,
∴ES=DE=,DS=DE=,
∴OS=,
∴OE==,
∴OB+CB的最小值为,
故选:A.
【点睛】
本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OE是OB+CB的最小值.
2、A
【解析】
【分析】
根据多边形对角线公式解答.
【详解】
解:十边形中过其中一个顶点有10-3=7条对角线,
故选:A.
【点睛】
此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.
3、D
【解析】
【分析】
由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°-∠BEF-∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3-x,
∴2(3-x)=x,
解得x=2.
故选:D.
【点睛】
本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
4、C
【解析】
【分析】
根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长
【详解】
解:如图,设的交点为,
四边形是正方形
,,
,,
,,
在与中
在中,
故选C
【点睛】
本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.
5、B
【解析】
【分析】
由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
【详解】
解:,
,
在和中,
,
,
,(故①正确);
于点,于点,
,
,
四边形是平行四边形,
,(故②正确);
,
,
,
,
四边形是平行四边形,(故③正确);
由以上可得出:,,,
,,,等.(故④错误),
故正确的有3个,
故选:.
【点评】
此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
6、C
【解析】
【分析】
先证明NM为△AEF的中位线,根据中位线性质得出MN=,可得AE最小时,MN最小,根据点E在直线BC上,根据点到直线的距离最短得出AE⊥BC时AE最短,根据在平行四边形ABCD中,∠BCD=120°,求出∠ABC=180°-∠BCD=180°-120°=60°,利用三角形内角和∠BAE=180°-∠ABE-∠AEB=180°-60°-90°=30°,利用30°直角三角形性质得出BE=,再利用勾股定理求出AE即可.
【详解】
解:∵M为FA中点,N为FE中点,
∴NM为△AEF的中位线,
∴MN=
∴AE最小时,MN最小,
∵点E在直线BC上,
根据点A到直线BC的距离最短,
∴AE⊥BC时AE最短,
∵在平行四边形ABCD中,∠BCD=120°,
∴∠ABC+∠BCD=180°,
∴∠ABC=180°-∠BCD=180°-120°=60°,
∴∠BAE=180°-∠ABE-∠AEB=180°-60°-90°=30°,
在Rt△ABE中,∠BAE=30°,AB=2,
∴BE=,
根据勾股定理AE最小值=,
∴MN=.
故选择C.
【点睛】
本题考查三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理,掌握三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理是解题关键.
7、D
【解析】
略
8、B
【解析】
【分析】
根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
【详解】
解:在正方形ABCD中,,,,
∵F为DE的中点,O为BD的中点,
∴OF为的中位线且CF为斜边上的中线,
∴,
∴的周长为,
∵,
∴,
∵,
∴,
∴,
在中,,,,
∴,
∴的周长为,
故选:B.
【点睛】
题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
9、A
【解析】
【分析】
由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.
【详解】
解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,
过点B作BH⊥DC于点H,
设CH=x,则DH=8-x,
则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,
解得:
则:,
则,
故选:A.
【点睛】
本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
10、C
【解析】
【分析】
根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAE=∠ADF=90°,
在△ABE与△DAF中,
,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∴∠ABE+∠BAO=∠DAF+∠BAO=90°,
∴∠AOB=90°,
∵△ABE≌△DAF,
∴S△ABE=S△DAF,
∴S△ABE-S△AOE=S△DAF-S△AOE,
即S△ABO=S四边形OEDF=1,
∵OA=1,
∴BO=2,
∴AB=,
故选:C.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
二、填空题
1、4
【解析】
【分析】
四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.
【详解】
解:∵四边形是平行四边形
∴
∵
∴
∵
∴
∴设
则
解得:
则
故
故答案为:4.
【点睛】
本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.
2、 7
【解析】
【分析】
在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),求出OA=m=2,OE=m=5,DE=n=b,则AE=3,OF=m=10,OB=m=a,根据▱ABCD的面积为10,求出DG=2,得到DE即为b值.
【详解】
解:在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,
在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),
图1中点A对应图2中的点A',得出OA=m=2,
图1中点E对应图2中的点E',得出OE=m=5,DE=n=b,则AE=3,
图1中点F对应图2中的点F',得出OF=m=10,
图1中点B对应图2中的点B',得出OB=m=a,
∵a=OB=OF﹣BF,BF=AE=3,OF=10
∴a=7,
∵▱ABCD的面积为10,AB=OB﹣OA=7﹣2=5,
∴DG=2,
在Rt△DGE中,∠DEG=45°,
∴DE==,
故答案是:7,.
【点睛】
此题考查了平行四边形与函数图象的结合,正确掌握平行四边形的性质,直线y=﹣x与坐标轴夹角45度的性质,一次函数图象平行的性质,勾股定理,正确理解函数图象得到相关信息是解题的关键.
3、##
【解析】
【分析】
过点作,根据直角三角形斜边上的中线等于斜边的一半,可得,根据等腰三角形的三线合一可得,中位线的性质求得,根据勾股定理求得,继而求得的周长.
【详解】
解:如图,过点作
在Rt中,,CD是斜边AB上的中线,
为的中点,
又为的中点,则
在中,
的周长等于
故答案为:
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.
4、6
【解析】
【分析】
由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.
【详解】
解:在矩形ABCD中,∠BAD=90°,
∵F为BE的中点,AF=6,
∴BE=2AF=12.
∵G,H分别为BC,EC的中点,
∴GH=BE=6,
故答案为6.
【点睛】
根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH.
5、90
【解析】
【分析】
根据旋转的性质和矩形的性质可得CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,由勾股定理可求AC=AC'的长,延长C'B'交BC于点E,连接CC',由勾股定理求出CC'的长,最后由勾股定理逆定理判断是直角三角形即可.
【详解】
解:∵将矩形ABCD绕点A按逆时针方向旋转90°,得到矩形AB′C′D′,
∴CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,
∴
延长C'B'交BC于点E,连接CC',如图,
则四边形是矩形
∴
∴
∴
而
∴
∴是直角三角形
∴
故答案为:90
【点睛】
本题考查勾肥定理、旋转的性质,矩形的性质等知识,解题的关键是掌握旋转变换的性质,
三、解答题
1、10cm
【解析】
【分析】
根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.
【详解】
解:∵∠BOC=120°,
∴∠AOB=180°﹣120°=60°,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∵AB=5cm,
∴OA=OB=AB=5cm,
∴AC=2AO=10cm,BD=AC=10cm.
【点睛】
本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.
2、 11 见解析
【解析】
【分析】
(1)直接利用勾股定理求出即可;
(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
【详解】
解:(1)AC2+BC2=()2+32=11;
故答案为:11;
(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
【点睛】
本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
3、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
【解析】
【分析】
(1)证明,可得出,则结论得证;
(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
(3)求出,设,则,,在中,得出关于的方程,解出则可得解.
【详解】
(1)证明:把绕点顺时针旋转至,如图1,
,,,
,
,,三点共线,
,
,
,
,
,
,
,
;
(2)①不成立,结论:;
证明:如图2,将绕点顺时针旋转至,
,,,,
,
,
,
;
②如图3,将绕点逆时针旋转至,
,,
,
,
,
,
,
,
.
即.
故答案为:.
(3)解:由(1)可知,
正方形的边长为6,
,
.
,
,
设,则,,
在中,
,
,
解得:.
,
.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
4、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
【解析】
【分析】
根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.
【详解】
解:如图,四边形AECF即为所求作.
理由:四边形ABCD是平行四边形,
∴AE∥CF,
∴∠EAO=∠FCO,
∵EF垂直平分线段AC,
∴OA=OC,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,
∴四边形AECF是平行四边形,
∵EA=EC或AC⊥EF,
∴四边形AECF是菱形.
故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
【点睛】
本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、 (1)①见解析;②见解析
(2)是,见解析
(3)
【解析】
【分析】
(1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
(2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
(3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
(1)
证明:①∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中线,且D与M重合,
∴BD=DC,
在△ABD与△EDC中,
,
∴△ABD≌△EDC(ASA),
即△ABM≌△EMC;
②由①得△ABD≌△EDC,
∴AB=ED,
∵AB∥ED,
∴四边形ABDE是平行四边形;
(2)
成立.理由如下:
如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
∵AD∥EC,ML∥DC,
∴四边形MDCL为平行四边形,
∴ML=DC=BD,
∵ML∥DC,
∴∠FML=∠MBD,
∵AD∥EC,
∴∠BMD=∠MFL,∠AMB=∠EFM,
在△BMD和△MFL中
∠MBD=∠FML∠BMD=∠MFLBD=ML,
∴△BMD≌△MFL(AAS),
∴BM=MF ,
∵AB∥ME,
∴∠ABM=∠EMF,
在△ABM和△EMF中,
∴△ABM≌△EMF(ASA),
∴AB=EM,
∵AB∥EM,
∴四边形ABME是平行四边形;
(3)
解:过点D作DG∥BN交AC于点G,
∵M为AD的中点,DG∥MN,
∴MN=DG,
∵D为BC的中点,
∴DG=BN,
∴MN=BN,
∴,
由(2)知四边形ABME为平行四边形,
∴BM=AE,
∴.
【点睛】
本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课时训练,共30页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共26页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。
这是一份2020-2021学年第二十二章 四边形综合与测试优秀课堂检测,共24页。试卷主要包含了下列命题错误的是,下列说法不正确的是等内容,欢迎下载使用。