终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第二十二章四边形章节训练试题(含解析)

    立即下载
    加入资料篮
    精品试题冀教版八年级数学下册第二十二章四边形章节训练试题(含解析)第1页
    精品试题冀教版八年级数学下册第二十二章四边形章节训练试题(含解析)第2页
    精品试题冀教版八年级数学下册第二十二章四边形章节训练试题(含解析)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时训练

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时训练,共30页。试卷主要包含了已知锐角∠AOB,如图.,下列说法正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 于点,以为邻边构造平行四边形,连接,则的度数的变化情况是(       A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小2、如图,平行四边形ABCD的对角线ACBD相交于点O,下列结论错误的是(  )A.AOCO B.ADBC C.ADBC D.∠DAC=∠ACD3、如图,在中,DE平分,则       A.30° B.45° C.60° D.80°4、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,则点C的坐标为(       A. B. C. D.5、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是(  )A.360° B.900° C.1440° D.1800°6、如图,正方形ABCD的两条对角线ACBD相交于点O,点EBD上,且BE=AD,则∠ACE的度数为(   )A.22.5° B.27.5° C.30° D.35°7、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点OBD的中点,过点AAEBCCB的延长线于点E,连接OE,则线段OE的长度是(       A.3cm B.4cm C.4.8cm D.5cm8、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD(2)分别以点CD为圆心,CD长为半径作弧,两弧交于点P,连接CPDP(3)作射线OPCD于点Q根据以上作图过程及所作图形,下列结论中错误的是(   )A.四边形OCPD是菱形 B.CP=2QCC.∠AOP=∠BOP D.CDOP9、下列说法正确的是(  )A.只有正多边形的外角和为360°B.任意两边对应相等的两个直角三角形全等C.等腰三角形有两条对称轴D.如果两个三角形一模一样,那么它们形成了轴对称图形10、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(       A.OAOCOBOD B.ABCDAOCOC.ABCDADBC D.∠BAD=∠BCDABCD第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AC是正五边形ABCDE的对角线,则为______度.2、如图,矩形ABCD中,ACBD交于点OMN分别为BCOC的中点.若MN=4,则AC的长为__________.3、如图,在矩形中,的角平分线于点,连接恰好平分,若,则的长为______.4、如图,RtABC中,∠BAC=90°,DEF分别为ABBCAC的中点,已知DF=5,则AE=_____.5、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.三、解答题(5小题,每小题10分,共计50分)1、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且ACOB(1)如图1,CDOBCDOA,连接ADBD           ②若OA=2,OB=3,则BD           (2)如图2,在射线OM上截取线段BE,使BEOA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;(3)如图3,当EOB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.2、如图,平行四边形ABCD中,∠ADB=90°.(1)求作:AB的垂直平分线MN,交AB于点M,交BD延长线于点N(要求:尺规作图,保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,设直线MNADE,且∠C=22.5°,求证:NEAB3、已知:在平行四边形ABCD中,分别延长BADC到点EH,使得BE=2ABDH=2CD.连接EH,分别交ADBC于点FG(1)求证:AFCG(2)连接BDEH于点O,若EHBD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?4、如图,已知平行四边形ABCD(1)用尺规完成以下基本作图:在CB上截取CE,使CECD,连接DE,作∠ABC的平分线BFAD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.5、如图,已知正方形ABCD,点E在边BC上,连接AE(1)尺规作图:作,使,点F的边与线段AB的交点.(不写作法,保留作图痕迹);(2)探究:AEDF的位置关系和数量关系,并说明理由. -参考答案-一、单选题1、A【解析】【分析】根据题意,作的延长线于,证明的角平分线即可解决问题.【详解】解:作的延长线于 ∵四边形 是正方形,       ∵四边形是平行四边形,          的角平分线, ∴点的运动轨迹是的角平分线,由图可知,点P从点D开始运动,所以一直减小,故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,AOOC,故A正确;,故B正确; ADBC,故C正确;故选:D【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.3、C【解析】【分析】根据平行四边形的性质得,故,由DE平分,即可计算【详解】∵四边形ABCD是平行四边形,DE平分故选:C.【点睛】本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.4、A【解析】【分析】如图:过CCEOA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.【详解】解:如图:过CCEOA,垂足为E∵菱形OABC,OC=OA=4∴∠OCE=30°OC=4OE=2CE= ∴点C的坐标为.故选A.【点睛】本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OECE的长度是解答本题的关键.5、C【解析】【分析】设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.【详解】解:设每一个外角都为x,则相邻的内角为4x由题意得,4x+x=180°,解得:x=36°,多边形的外角和为360°,360°÷36°=10,所以这个多边形的边数为10,则该多边形的内角和是:(10﹣8)×180=1440°.故选:C【点睛】本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.6、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,BC=AD,∠DBC=45°,BE=ADBE=BC∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,ACBD∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.7、B【解析】【分析】由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.【详解】解:∵四边形ABCD是菱形,BDACBD=6cm,S菱形ABCDAC×BD=24cm2AC=8cm,AEBC∴∠AEC=90°,OEAC=4cm,故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.8、A【解析】【分析】根据作图信息可以判断出OP平分,由此可以逐一判断即可.【详解】解:由作图可知,平分OP垂直平分线段CD∴∠AOP=∠BOPCDOP故选项CD正确;由作图可知, 是等边三角形, OP垂直平分线段CD CP=2QC故选项B正确,不符合题意;由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.9、B【解析】【分析】选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.【详解】解:A.所有多边形的外角和为,故本选项不合题意;B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;C.等腰三角形有1条对称轴,故本选项不合题意;D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;故选:B.【点睛】此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.10、B【解析】二、填空题1、72【解析】【分析】先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.【详解】解:五边形是正五边形,故答案为:72.【点睛】本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.2、16【解析】3、【解析】【分析】根据矩形的性质得,根据BE的角平分线,得,则,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分,等量代换得,所以,即可得.【详解】解:∵四边形ABCD为矩形,BE的角平分线,中,根据勾股定理得,EC平分故答案为:【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.4、5【解析】【分析】依题意,可得DF是△ABC的中位线,得到BC的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;【详解】DF分别为ABAC的中点,DF是△ABC的中位线,BC2DF10RtABC中,EBC的中点,故答案为:5【点睛】本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;5、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.三、解答题1、 (1)△DCA(2)∠ABO+∠OCE=45°,理由见解析(3)【解析】【分析】(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CAOA=CD,即可利用SAS证明△AOB≌△DCA;②过点DDRBOBO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OCOBDROBCDOB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到(2)如图所示,过点CCWAC,使得CW=OA,连接AWBW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BWCE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;(3)如图3-1所示,连接AF,则,如图3-2所示,当AFQ三点共线时,AQ有最大值,由此求解即可.(1)解:①∵CDOB∴∠ACD=∠BOA=90°,又∵OB=CAOA=CD∴△AOB≌△DCASAS);故答案为:△DCA②如图所示,过点DDRBOBO延长线于R由①可知△AOB≌△DCACD=OA=2,AC=OB=3,OCOBDROBCDOBDR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,BR=OB+OR=5,故答案为:(2)解:∠ABO+∠OCE=45°,理由如下:如图所示,过点CCWAC,使得CW=OA,连接AWBW在△AOB和△WCA中,∴△AOB≌△WCASAS),AB=AW,∠ABO=∠WAC∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠BAO+∠WAC=90°,∴∠BAW=90°,又∵AB=AW∴∠ABW=∠AWB=45°,BEOCCWOCBECW又∵BE=OA=CW∴四边形BECW是平行四边形,BWCE∴∠WJC=∠BWA=45°,∵∠WJC=∠WAC+∠JCA∴∠ABO+∠OCE=45°;(3)解:如图3-1所示,连接AF∴如图3-2所示,当AFQ三点共线时,AQ有最大值,EOB的中点,BE=OABE=OE=OAOB=AC=2OA∵△CFQ是等腰直角三角形,CF=QF∴∠CFQ=∠CFA=90°,【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.2、 (1)见解析(2)见解析【解析】【分析】(1)根据题意作AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)连接,根据平行四边形的性质求得,进而根据垂直平分线的性质以及导角可求得 是等腰直角三角形,进而证明即可得证NEAB(1)如图,AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)如图,连接四边形是平行四边形的垂直平分线中,【点睛】本题考查了作垂直平分线,平行四边形的性质,垂直平分线的性质,等边对等角,三角形全等的性质与判定,掌握以上知识是解题的关键.3、 (1)见解析(2)当AD=AB时,四边形BEDH是正方形【解析】【分析】(1)要证明AF=CG,只要证明△EAF≌△HCG即可;(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.(1)证明:∵四边形ABCD是平行四边形,ABCDAB=CD,∠BAD=∠BCD∴∠AEF=∠CHGBE=2ABDH=2CDBE=DHBE-AB=DH-DCAE=CH∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH∴△EAF≌△HCG(ASA),AF=CG(2)解:当AD=AB时,四边形BEDH是正方形;理由:∵BEDHBE=DH∴四边形EBHD是平行四边形,EHBD∴四边形EBHD是菱形,ED=EB=2ABAE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2AD=AB∴当AD=AB时,四边形BEDH是正方形.【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.4、 (1)见解析(2)见解析【解析】【分析】(1)延长CBE使CECD,然后作∠ABC的平分线交AD的延长线于F(2)先根据平行四边形的性质得到ADBCABCDADBC,则CEAB,再证明∠ABF=∠F得到ABAF,然后证明BEDF,从而可判断四边形BEDF为平行四边形.(1)如图,DEBF为所作;(2)证明:∵四边形ABCD为平行四边形,ADBCABCDADBCCECDCEABBF平分∠ABC∴∠ABF=∠CBFAFBC∴∠CBF=∠F∴∠ABF=∠FABAFCEAF,即CBBEADDFBEDFBEDF∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.5、 (1)见解析;(2),见解析【解析】【分析】(1)根据题意作出即可;(2)证明即可得结论.(1)如图,即为所求.(2)∵四边形ABCD是正方形,中, AAS),,即【点睛】本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键. 

    相关试卷

    2020-2021学年第二十二章 四边形综合与测试精品课时练习:

    这是一份2020-2021学年第二十二章 四边形综合与测试精品课时练习,共29页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    2020-2021学年第二十二章 四边形综合与测试优秀课堂检测:

    这是一份2020-2021学年第二十二章 四边形综合与测试优秀课堂检测,共24页。试卷主要包含了下列命题错误的是,下列说法不正确的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题,共27页。试卷主要包含了六边形对角线的条数共有,如图,正方形的边长为,对角线等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map