年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第二十二章四边形章节练习试题(无超纲)

    立即下载
    加入资料篮
    精品试题冀教版八年级数学下册第二十二章四边形章节练习试题(无超纲)第1页
    精品试题冀教版八年级数学下册第二十二章四边形章节练习试题(无超纲)第2页
    精品试题冀教版八年级数学下册第二十二章四边形章节练习试题(无超纲)第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第二十二章 四边形综合与测试精品随堂练习题

    展开

    这是一份初中数学第二十二章 四边形综合与测试精品随堂练习题,共29页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    2、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是( )
    A.5 B.4 C.7 D.6
    3、下列关于的叙述,正确的是( )
    A.若,则是矩形 B.若,则是正方形
    C.若,则是菱形 D.若,则是正方形
    4、下列说法不正确的是(  )
    A.矩形的对角线相等
    B.直角三角形斜边上的中线等于斜边的一半
    C.对角线互相垂直且相等的四边形是正方形
    D.菱形的对角线互相垂直
    5、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )

    A.3 B.6 C. D.
    6、一个多边形的每个内角均为150°,则这个多边形是( )
    A.九边形 B.十边形 C.十一边形 D.十二边形
    7、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是(   )

    A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
    B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
    C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
    D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
    8、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
    B.满足的三个数,,是勾股数
    C.对角线相等的四边形各边中点连线所得四边形是矩形
    D.五边形的内角和为
    9、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于( )

    A. B. C. D.
    10、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )

    A.①②③ B.②③④ C.①②④ D.①④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在四边形ABCD中,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以A、M、E、F为顶点的四边形是平行四边形.

    2、如图,正方形ABCD的边长为4,E是BC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.

    3、如图,AC是正五边形ABCDE的对角线,则为______度.

    4、一个多边形的每个内角都等于120°,则这个多边形的边数是______.
    5、如图,在中,∠ACB=90°,DEBC,DE=AC,若AC=2, AD=DB=4,∠ADC=30°.以下四个结论:①四边形ACED是平行四边形;②∠ABE=;③AB=;④点F是AD中点,点G、H分别是线段BC、AB上的动点,则FG+GH的最小值为.正确的是_____.(填序号)

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.

    (1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
    (2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
    2、如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.

    (1)求证:四边形EFGH是平行四边形;
    (2)如果∠BDC=90°,∠DBC=30°,,AD=6,求四边形EFGH的周长.
    3、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.

    4、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

    (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
    (2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
    (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
    5、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.

    (1)若∠BAE=50°,求∠DGF的度数;
    (2)求证:DF=DC.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    2、D
    【解析】
    【分析】
    利用多边形内角和公式和外角和定理,列出方程即可解决问题.
    【详解】
    解:根据题意,得:(n-2)×180=360×2,
    解得n=6.
    故选:D.
    【点睛】
    本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.
    3、A
    【解析】
    【分析】
    由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
    【详解】
    解:中,,
    四边形是矩形,选项符合题意;
    中,,
    四边形是菱形,不一定是正方形,选项不符合题意;
    中,,
    四边形是矩形,不一定是菱形,选项不符合题意;
    中,,
    四边形是菱形,选项不符合题意;
    故选:.
    【点睛】
    本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
    4、C
    【解析】
    【分析】
    利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
    【详解】
    解;矩形的对角线相等,故选项A不符合题意;
    直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
    对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
    菱形的对角线互相垂直,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
    5、B
    【解析】
    【分析】
    连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
    【详解】
    解:连接,

    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,AC=BD,
    ∵点是AC的中点, ∴,
    ∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,

    ∴,
    ∴是等边三角形,
    ∴∠BAA'=60°,
    ∴∠ACB=30°,
    ∵AB=3, ∴AC=2AB=6,
    ∴.
    即点B与点之间的距离为6.
    故选:B.
    【点睛】
    本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
    6、D
    【解析】
    【分析】
    先求出多边形的外角度数,然后即可求出边数.
    【详解】
    解:∵多边形的每个内角都等于150°,
    ∴多边形的每个外角都等于180°-150°=30°,
    ∴边数n=360°÷30°=12,
    故选:D.
    【点睛】
    本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.
    7、D
    【解析】
    【分析】
    当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
    【详解】
    解:如图,连接当为各边中点时,可知分别为的中位线


    ∴四边形是平行四边形
    A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
    B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
    C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
    D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
    故选D.
    【点睛】
    本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
    8、D
    【解析】
    【分析】
    正确的命题是真命题,根据定义解答.
    【详解】
    解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
    B. 满足的三个正整数,,是勾股数,故该项不符合题意;
    C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
    D. 五边形的内角和为,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
    9、B
    【解析】
    【分析】
    设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.
    【详解】
    ∵,
    ∴AB=2BC,
    又∵点D,E分别是AB,BC的中点,
    ∴设BE=x,则EC=x,AD=BD=2x,

    ∵四边形ABGF是正方形,
    ∴∠ABF=45°,
    ∴△BDH是等腰直角三角形,
    ∴BD=DH=2x,
    ∴S1=DH•AD=,即2x•2x=,
    ∴x2=,
    ∵BD=2x,BE=x,
    ∴S2=MH•BD=(3x−2x)•2x=2x2,
    S3=EN•BE=x•x=x2,
    ∴S2+S3=2x2+x2=3x2=,
    故选:B.
    【点睛】
    本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.
    10、C
    【解析】
    【分析】
    利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
    【详解】
    ∵CM、BN分别是高
    ∴△CMB、△BNC均是直角三角形
    ∵点P是BC的中点
    ∴PM、PN分别是两个直角三角形斜边BC上的中线

    故①正确
    ∵∠BAC=60゜
    ∴∠ABN=∠ACM=90゜−∠BAC=30゜
    ∴AB=2AN,AC=2AM
    ∴AN:AB=AM:AC=1:2
    即②正确
    在Rt△ABN中,由勾股定理得:
    故③错误
    当∠ABC=60゜时,△ABC是等边三角形
    ∵CM⊥AB,BN⊥AC
    ∴M、N分别是AB、AC的中点
    ∴MN是△ABC的中位线
    ∴MN∥BC
    故④正确
    即正确的结论有①②④
    故选:C
    【点睛】
    本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
    二、填空题
    1、4s或s
    【解析】
    【分析】
    分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.
    【详解】
    解:①当点F在线段BM上,即0≤t<2,以A、M、E、F为顶点的四边形是平行四边形,
    则有t=4﹣2t,解得t=,
    ②当F在线段CM上,即2≤t≤5,以A、M、E、F为顶点的四边形是平行四边形,
    则有t=2t﹣4,解得t=4,
    综上所述,t=4或,以A、M、E、F为顶点的四边形是平行四边形,
    故答案为:4s或s.
    【点睛】
    此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.
    2、
    【解析】
    【分析】
    要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.
    【详解】
    解:如图,连接AE,PA,

    ∵四边形ABCD是正方形,BD为对角线,
    ∴点C关于BD的对称点为点A,
    ∴PE+PC=PE+AP,
    根据两点之间线段最短可得AE就是AP+PE的最小值,
    ∵正方形ABCD的边长为4,E是BC边的中点,
    ∴BE=2,
    ∴AE=AB2+BE2=42+22=25,
    故答案为:.
    【点睛】
    本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.
    3、72
    【解析】
    【分析】
    先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.
    【详解】
    解:五边形是正五边形,



    故答案为:72.
    【点睛】
    本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.
    4、6
    【解析】
    【分析】
    先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.
    【详解】
    ∵多边形的每一个内角都等于120°,
    ∴多边形的每一个外角都等于180°-120°=60°,
    ∴边数n=360°÷60°=6.
    故答案为:6.
    【点睛】
    此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
    5、①③④
    【解析】
    【分析】
    证明,结合DE=AC,可判定结论①;假设∠ABE=,在中,根据勾股定理得到,则假设不成立,可判断结论②;在中和中,利用勾股定理可求出AB的值,即可判断结论③;作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.通过勾股定理分别求得FG、GH的值,相加即可判断结论④.
    【详解】
    解:∵∠ACB=90°,DEBC,
    ∴∠CDE=∠ACB=90°,

    又∵DE=AC,
    ∴四边形ACED是平行四边形;故结论①正确.
    ∵AD=DB=4,∠ADC=30°,
    ∴∠ABC=∠DAB=,
    假设∠ABE=,则,
    ∴在中,,
    ∴,
    ∴假设不成立;故结论②错误.
    在中,,,
    ∴,

    ∴在中,,,
    ∴,
    即AB=;故结论③正确.
    如图所示,作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.

    连接AG,与BC相交于点M,
    ∵,∠ABC=,
    ∴,
    ∴,
    ∵四边形ACED是平行四边形,
    ∴,
    ∴,

    又∵点F是AD中点,点F与点F’关于BC对称,AD=4,
    ∴,
    ∴,
    ∴,
    ∴为等腰直角三角形,
    ∴,,
    ∴,
    又∵∠DAB=,
    ∴,
    ∴在中,,
    ∵点F是AD中点,点F与点F’关于BC对称,,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴在中,,
    ∴,
    即FG+GH的最小值为;故结论④正确.
    故答案为:①③④.
    【点睛】
    本题考查勾股定理的应用.其中涉及平行线的判定,平行四边形的判定和性质,直角三角形中角所对的直角边等于斜边的一半,等腰直角三角形的判定和性质,“一定两动”求线段最小值等问题.综合性较强.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
    (2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
    (1)
    解:如图,作∠DAE的角平分线,与DC的交点即为所求.

    ∵AE=AD,∠EAF=∠DAF,AF=AF,
    ∴△AEF≌△ADF,
    ∴∠AEF=∠D=90°,
    ∴∠DAE+∠DFE=180°,
    ∵∠EFC+∠DFE=180°,
    ∴∠EFC=∠DAE,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠BEA=∠DAE,
    ∴∠EFC=∠BEA;
    (2)
    解:∵四边形ABCD是矩形,
    ∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
    ∵AE=AD=5,
    ∴BE===3,
    ∴EC=BC﹣BE=5﹣3=2,
    由(1)得:△AEF≌△ADF,
    ∴ ,
    在 中, ,
    ∴ ,
    ∴ .
    【点睛】
    本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
    2、 (1)见解析
    (2)12
    【解析】
    【分析】
    (1)利用三角形的中位线定理得出EH=FG=AD,EF=GH=BC,即可得出结论;
    (2)根据含30度角的直角三角形的性质,求得,由(1)得出四边形EFGH的周长=EH+GH+FG+EF=AD+BC,即可得出结果.
    (1)
    证明:∵点E,F,G,H分别是AB,AC,CD,BD的中点.
    ∴EH=FG=AD,BC,
    ∴四边形EFGH是平行四边形;
    (2)
    ∵∠BDC=90°,∠DBC=30°,
    ∴BC=2CD=4.
    由(1)得:四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
    又∵AD=6,
    ∴四边形EFGH的周长=AD+BC=6+8=12.
    【点睛】
    本题考查了平行四边形的判定与性质,三角形的中位线定理,含30度角的直角三角形的性质,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.
    3、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
    4、 (1)=
    (2)∠P=90°-∠A
    (3)∠P=180°-∠BAD-∠CDA,探究见解析
    【解析】
    【分析】
    (1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
    (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
    (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
    (1)
    ∠DBC+∠ECB-∠A=180°,
    理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
    ∴∠DBC+∠ECB-∠A=180°,
    故答案为:=;
    (2)
    ∠P=90°-∠A,
    理由是:∵BP平分∠DBC,CP平分∠ECB,
    ∴∠CBP=∠DBC,∠BCP=∠ECB,
    ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
    ∵∠DBC+∠ECB=180°+∠A,
    ∴∠P=180°-(180°+∠A)=90°-∠A.
    故答案为:∠P=90°-∠A,
    (3)
    ∠P=180°-∠BAD-∠CDA,
    理由是:如图,

    ∵∠EBC=180°-∠1,∠FCB=180°-∠2,
    ∵BP平分∠EBC,CP平分∠FCB,
    ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
    ∴∠3+∠4=180°-(∠1+∠2),
    ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
    又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
    ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
    【点睛】
    本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
    5、 (1)∠DGF=25°;
    (2)见解析
    【解析】
    【分析】
    (1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;
    (2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.
    (1)
    解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,
    ∴∠BAE=∠DAG=50°,
    ∴∠AGD=∠ADG==65°,
    ∴∠DGF=90°-65°=25°;
    (2)
    证明:连接AF,

    由旋转得矩形AEFG≌矩形△ABCD,
    ∴AF=BD,∠FAE=∠ABE=∠AEB,
    ∴AF∥BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=DC.
    【点睛】
    本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共30页。

    初中数学第二十二章 四边形综合与测试优秀课后练习题:

    这是一份初中数学第二十二章 四边形综合与测试优秀课后练习题,共33页。试卷主要包含了已知,如图,在正方形ABCD中,点E,下列关于的叙述,正确的是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品课时练习:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共29页。试卷主要包含了如图,E等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map