搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版八年级数学下册第二十二章四边形专项测试试题(含详细解析)

    2022年最新冀教版八年级数学下册第二十二章四边形专项测试试题(含详细解析)第1页
    2022年最新冀教版八年级数学下册第二十二章四边形专项测试试题(含详细解析)第2页
    2022年最新冀教版八年级数学下册第二十二章四边形专项测试试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试精品课时练习

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共27页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中是真命题的是(       ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形2、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为(       A.3 B.6 C. D.3、将一张长方形纸片按如图所示的方式折叠,BDBE为折痕,则∠EBD的度数(     A.80° B.90° C.100° D.110°4、如图,任意四边形ABCD中,EFGH分别是各边上的点,对于四边形EFGH的形状,小聪进行了探索,下列结论错误的是(   )A.EFGH是各边中点.且AC=BD时,四边形EFGH是菱形B.EFGH是各边中点.且ACBD时,四边形EFGH是矩形C.EFGH不是各边中点.四边形EFGH可以是平行四边形D.EFGH不是各边中点.四边形EFGH不可能是菱形5、下列说法不正确的是(  )A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直6、如图,DE的中位线,若,则BC的长为(   )A.8 B.7 C.6 D.7.57、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是(       A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶28、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BADBC边于点E,则EC等于(  )A.1 B.2 C.3 D.49、在四边形ABCD中,对角线ACBD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是(       A.∠ABC=90° B.ACBD C.ABCD D.ABCD10、如图,在ABCD中,对角线ACBD相交于点O,过点OOEAC,交AD于点E,连接CE,若△CDE的周长为8,则ABCD的周长为(       A.8 B.10 C.16 D.20第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、正方形的边长与它的对角线的长度的比值为_____.2、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.3、三角形的中位线______于三角形的第三边,并且等于第三边的______.数学表达式:如图,ADBDAEECDEBC,且DEBC4、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.5、如图, 在矩形中, 对角线相交于点,若,则的长为_____三、解答题(5小题,每小题10分,共计50分)1、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③(2)【结论运用】如图2,正方形的边长为6,点O是对角线的交点,点E上,过点C,垂足为F,连接①求证:②若,求的长.2、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交ADBCEF点,交BDO点.(2)在(1)的条件下,求证:AE=CF3、如图,直线,线段分别与直线交于点、点,满足(1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接.(保留作图痕迹,不写做法,不下结论)(2)求证:四边形为菱形.(请补全下面的证明过程)证明:____①____垂直平分∴____②________③____∴四边形是___④_____∴四边形是菱形(______⑤__________)(填推理的依据).4、若直线分别交轴、轴于AC两点,点P是该直线上在第一象限内的一点,PB轴,B为垂足,且SABC= 6(1)求点BP的坐标;(2)点D是直线AP上一点,ABD是直角三角形,求点D坐标;(3)请问坐标平面是否存在点Q,使得以QCPB为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.5、如图,在四边形ABCD中,ABAD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BDBC于点EF.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形. -参考答案-一、单选题1、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.【详解】解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D、有三个角是直角的四边形是矩形,所以该选项不正确.故选:A.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.2、B【解析】【分析】连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.【详解】解:连接∵四边形ABCD是矩形, ∴∠ABC=90°,AC=BD∵点AC的中点, ∴∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形 是等边三角形, ∴∠BAA'=60°, ∴∠ACB=30°, AB=3, ∴AC=2AB=6, 即点B与点之间的距离为6. 故选:B.【点睛】本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.3、B【解析】【分析】根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∠ABE+∠ABE+∠DBC+∠DBC′=180°,且∠EBD=∠ABE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∵∠ABE+∠ABE+∠DBC+∠DBC′=180°,∴∠EBD=∠ABE+∠DBC′=180°×=90°.故选B【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠ABE,∠DBC=∠DBC′是解题的关键.4、D【解析】【分析】为各边中点,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中ACBD,则,平行四边形为矩形,进而可判断正误;EFGH不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.【详解】解:如图,连接为各边中点时,可知分别为的中位线∴四边形是平行四边形A中AC=BD,则,平行四边形为菱形;正确,不符合题意;B中ACBD,则,平行四边形为矩形;正确,不符合题意;C中EFGH不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;故选D.【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.5、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.6、A【解析】【分析】已知DE的中位线,,根据中位线定理即可求得BC的长.【详解】的中位线,故选:A.【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.7、D【解析】8、B【解析】【分析】根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.【详解】解:∵四边形ABCD为平行四边形,AE平分故选:B.【点睛】题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.9、B【解析】10、C【解析】【分析】根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.【详解】解:∵四边形ABCD是平行四边形,OA=OCAB=CDAD=BCOEACOE是线段AC的垂直平分线,AE=CE∵△CDE的周长为8,CE+DE+CD=8,即AD+CD =8,∴平行四边形ABCD的周长为2(AD+CD)=16.故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.二、填空题1、##【解析】【分析】由正方形的性质得出,由勾股定理求出,即可得出正方形的边长与对角线长的比值.【详解】解:四边形是正方形,故答案为:【点睛】本题考查了正方形的性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.2、6【解析】【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【详解】解:多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.3、     平行     一半【解析】4、15【解析】【分析】由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【详解】解:如图,DEF分别是△ABC的三边的中点,DE=ACDF=BCEF=AB∴△DEF的周长=DE+DF+EF=AC+BC+AB)=×(8+10+12)cm=15cm故答案为15.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.5、8【解析】【分析】由四边形为矩形,根据矩形的对角线互相平分且相等,可得,由,根据有一个角为的等腰三角形为等边三角形可得三角形为等边三角形,根据等边三角形的每一个角都相等都为可得出,在直角三角形中,根据直角三角形的两个锐角互余可得,根据角所对的直角边等于斜边的一半,由的长可得出的长.【详解】解:四边形为矩形,,且为等边三角形,在直角三角形中,故答案为:8.【点睛】此题考查了矩形的性质,等边三角形的判定与性质,以及含角直角三角形的性质,熟练掌握矩形的性质是解觉本题的关键.三、解答题1、 (1)见解析;(2)①见解析;②【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,整理出,再结合即可证明②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)四边形ABCD是正方形中,【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.2、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作.(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBCEFBD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD在△EOD与△FOB中,∴△EOD≌△FOBASA),ED=BFAD-ED=BC-BF,即AE=CF【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、 (1)见解析(2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以AD为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1E,交l2F,直线EF为线段AD的垂直平分线,连接即可;(2):根据,内错角相等得出∠2①,根据垂直平分       ,得出,可证②EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).(1)解:分别以AD为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1E,交l2F,直线EF为线段AD的垂直平分线,连接即可;如图所示(2)证明:∠2①,垂直平分       ∴②EOCOF③,∴四边形是平行四边形④,∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.4、 (1)B(2,0),P(2,3)(2)(2,3)或((3)(0,5)或(0,-1)或(4,1)【解析】【分析】(1)设Bx,0),则Pxx+2),由SABC=6列方程求出x的值,即得到点B和点P的坐标;(2)当点D与点P重合时,ABD是直角三角形;当点D与点P不重合时,过点CCEAP,先求出直线CE的解析式,再由直线BDCE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;(3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.(1)解:如图1,设Bx,0),则Pxx+2),对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,A(-4,0),C(0,2),∵点P在第一象限,且SABC=6,×2(x+4)=6,解得x=2,B(2,0),P(2,3).(2)如图1,点D与点P重合,此时∠ABD=∠ABP=90°,∴△ABD是直角三角形,此时D(2,3);如图2,点D在线段AP上,∠ADB=90°,此时ABD是直角三角形,作CEAP,交x轴于点E则∠ACE=∠ADB=90°,BDCEAC=Em,0),AEOC=ACCE=SACE,得AEOC=ACCE∴2(m+4)=CECE=m+4),∵∠COE=90°,OE2+OC2=CE2m2+22=(m+4)]2,整理得,m2-2m+1=0,解得,m1=m2=1,E(1,0);设直线CE的解析式为y=kx+2,则k+2=0,解得,k=-2,y=-2x+2;设直线BD的解析式为y=-2x+n,则-2×2+n=0,解得,n=4,y=-2x+4,,得:D);由图象可知,当点DPA的延长线上,或点DAP的延长线上,则ABD不能是直角三角形,综上所述,点D的坐标是(2,3)或();(3)存在.如图, 当四边形CQBP是平行四边形时,此时,CQ=PB=3,Q(0,-1);当四边形CQ1PB是平行四边形时,此时,CQ1=PB=3,Q1(0,5);当四边形CPQ2B是平行四边形时,此时,CPBQ2CBPQ2Q2(4,1);综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).【点睛】此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.5、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DFAD//BC∴∠ADE=∠EBFAF垂直平分BDBE=DE在△ADE和△FBE中,∴△ADE≌△FBEASA),AE=EFBDAF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀综合训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀综合训练题,共24页。

    初中数学第二十二章 四边形综合与测试优秀课后测评:

    这是一份初中数学第二十二章 四边形综合与测试优秀课后测评,共28页。试卷主要包含了如图,菱形的对角线,如图,在正方形ABCD中,点E,如图,在中,DE平分,,则等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题,共28页。试卷主要包含了下列命题不正确的是,如图,正方形的边长为,对角线等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map