搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版八年级数学下册第二十二章四边形定向测评试题(含详细解析)

    2022年最新冀教版八年级数学下册第二十二章四边形定向测评试题(含详细解析)第1页
    2022年最新冀教版八年级数学下册第二十二章四边形定向测评试题(含详细解析)第2页
    2022年最新冀教版八年级数学下册第二十二章四边形定向测评试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀习题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀习题,共27页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形定向测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
    A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
    2、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是(  )

    A.矩形 B.菱形 C.正方形 D.梯形
    3、如图,DE是的中位线,若,则BC的长为(   )

    A.8 B.7 C.6 D.7.5
    4、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )

    A. B. C. D.
    5、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )

    A.8 B.10 C.12 D.14
    6、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    7、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是(   )
    A.20 B.40 C.60 D.80
    8、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )

    A.8 B.10 C.12 D.16
    9、在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是( )
    A.∠ABC=90° B.AC⊥BD C.AB=CD D.AB∥CD
    10、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )

    A.2 B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,,D为外一点,且交的延长线于E点,若,则_______.

    2、如图,AC是正五边形ABCDE的对角线,则为______度.

    3、已知一个多边形的内角和为,则这个多边形是________边形.
    4、如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=6,则GH的长为_________.

    5、矩形的性质定理1:矩形的四个角都是________.

    符号语言:
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=∠C=∠D=90°.
    矩形的性质定理2:矩形的对角线________.
    符号语言:

    ∵四边形ABCD是矩形,
    ∴AC = BD.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.

    2、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.

    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.
    3、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.

    (1)求证:四边形ABCD是矩形;
    (2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.
    4、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

    (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
    (2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
    (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
    5、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.

    (1)求证:四边形是平行四边形:
    (2)若.
    ①当___________时,四边形是矩形;
    ②若四边形是菱形,则________.

    -参考答案-
    一、单选题
    1、D
    【解析】

    2、B
    【解析】
    【分析】
    根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.
    【详解】

    展得到的图形如上图,
    由操作过程可知:AB=CD,BC=AD,
    ∴四边形ABCD是平行四边形,
    ∵AC⊥BD,
    ∴四边形ABCD为菱形,
    故选:B.
    【点睛】
    本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.
    3、A
    【解析】
    【分析】
    已知DE是的中位线,,根据中位线定理即可求得BC的长.
    【详解】
    是的中位线,,

    故选:A.
    【点睛】
    此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
    4、C
    【解析】
    【分析】
    根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长
    【详解】
    解:如图,设的交点为,

    四边形是正方形
    ,,
    ,,
    ,,





    在与中



    在中,
    故选C
    【点睛】
    本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.
    5、C
    【解析】
    【分析】
    根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.
    【详解】
    解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,
    ∴∠BDE=∠CBD,
    ∴∠BDE=∠DBE,
    ∴BE=DE,
    ∵的面积是22.5,,
    ∴ ,解得: ,
    ∴,
    在 中,由勾股定理得:

    ∴ .
    故选:C
    【点睛】
    本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.
    6、A
    【解析】
    【分析】
    利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.
    【详解】
    解:∵AB=3,AC=4,32+42=52,
    ∴AB2+AC2=BC2,
    ∴△ABC是直角三角形,∠BAC=90°,
    ∴AB⊥AC,故①正确;
    ∵△ABD,△ACE都是等边三角形,
    ∴∠DAB=∠EAC=60°,
    ∴∠DAE=150°,
    ∵△ABD和△FBC都是等边三角形,
    ∴BD=BA,BF=BC,
    ∴∠DBF=∠ABC,
    在△ABC与△DBF中,

    ∴△ABC≌△DBF(SAS),
    ∴AC=DF=AE=4,
    同理可证:△ABC≌△EFC(SAS),
    ∴AB=EF=AD=3,
    ∴四边形AEFD是平行四边形,故②正确;
    ∴∠DFE=∠DAE=150°,故③正确;
    过A作AG⊥DF于G,如图所示:
    则∠AGD=90°,
    ∵四边形AEFD是平行四边形,
    ∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,
    ∴AG=AD=,
    ∴S▱AEFD=DF•AG=4×=6;故④错误;
    ∴错误的个数是1个,
    故选:A.

    【点睛】
    此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.
    7、B
    【解析】
    【分析】
    根据菱形的面积公式求解即可.
    【详解】
    解:这个菱形的面积=×10×8=40.
    故选:B.
    【点睛】
    本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.
    8、A
    【解析】
    【分析】
    根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
    【详解】
    解:①在长方形纸片ABCD中,AB=12,AD=20,
    ∴BC=AD=20,
    当p与B重合时,BA′=BA=12,
    CA′=BC-BA′=20-12=8,
    ②当Q与D重合时,
    由折叠得A′D=AD=20,
    由勾股定理,得
    CA′==16,
    CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
    故选:A.
    【点睛】
    本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
    9、B
    【解析】

    10、B
    【解析】
    【分析】
    先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴△ABD和△BCD是等腰直角三角形,
    如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,

    由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
    ∴重叠部分的四边形D'EBF为平行四边形,
    设DD'=x,则D'C=6-x,D'E=x,
    ∴S▱D'EBF=D'E•D'C=(6-x)x=4,
    解得:x=3+或x=3-,
    故选:B.
    【点睛】
    本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
    二、填空题
    1、2
    【解析】
    【分析】
    过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
    【详解】
    解:∵DE⊥AC,
    ∴∠E=∠C=90°,
    ∴,
    过点D作DM⊥CB于M,则∠M=90°=∠E,
    ∵AD=BD,
    ∴∠BAD=∠ABD,
    ∵AC=BC,
    ∴∠CAB=∠CBA,
    ∴∠DAE=∠DBM,
    ∴△ADE≌△BDM,
    ∴DM=DE=3,
    ∵∠E=∠C=∠M =90°,
    ∴四边形CEDM是矩形,
    ∴CE=DM=3,
    ∵AE=1,
    ∴BC=AC=2,
    故答案为:2.

    【点睛】
    此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
    2、72
    【解析】
    【分析】
    先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.
    【详解】
    解:五边形是正五边形,



    故答案为:72.
    【点睛】
    本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.
    3、八##8
    【解析】
    【分析】
    n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据n边形的内角和公式,得
    (n-2)•180=1080,
    解得n=8.
    ∴这个多边形的边数是8.
    故答案为:八.
    【点睛】
    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
    4、6
    【解析】
    【分析】
    由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.
    【详解】
    解:在矩形ABCD中,∠BAD=90°,
    ∵F为BE的中点,AF=6,
    ∴BE=2AF=12.
    ∵G,H分别为BC,EC的中点,
    ∴GH=BE=6,
    故答案为6.
    【点睛】
    根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH.
    5、 直角 相等
    【解析】

    三、解答题
    1、10cm
    【解析】
    【分析】
    根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.
    【详解】
    解:∵∠BOC=120°,
    ∴∠AOB=180°﹣120°=60°,
    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,
    ∴OA=OB,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∵AB=5cm,
    ∴OA=OB=AB=5cm,
    ∴AC=2AO=10cm,BD=AC=10cm.
    【点睛】
    本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.
    2、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,

    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
    3、 (1)见解析
    (2)AD=2AB,理由见解析
    【解析】
    【分析】
    (1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
    (2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
    (1)
    证明:∵点M是AD边的中点,
    ∴AM=DM,
    ∵四边形ABCD是平行四边形,
    ∴AB=DC,AB∥CD,
    在△ABM和△DCM中,

    ∴△ABM≌△DCM(SSS),
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=90°,
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (2)
    解:AD与AB之间的数量关系:AD=2AB,理由如下:
    ∵△BCM是直角三角形,BM=CM,
    ∴△BCM是等腰直角三角形,
    ∴∠MBC=45°,
    由(1)得:四边形ABCD是矩形,
    ∴AD∥BC,∠A=90°,
    ∴∠AMB=∠MBC=45°,
    ∴△ABM是等腰直角三角形,
    ∴AB=AM,
    ∵点M是AD边的中点,
    ∴AD=2AM,
    ∴AD=2AB.
    【点睛】
    本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.
    4、 (1)=
    (2)∠P=90°-∠A
    (3)∠P=180°-∠BAD-∠CDA,探究见解析
    【解析】
    【分析】
    (1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
    (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
    (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
    (1)
    ∠DBC+∠ECB-∠A=180°,
    理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
    ∴∠DBC+∠ECB-∠A=180°,
    故答案为:=;
    (2)
    ∠P=90°-∠A,
    理由是:∵BP平分∠DBC,CP平分∠ECB,
    ∴∠CBP=∠DBC,∠BCP=∠ECB,
    ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
    ∵∠DBC+∠ECB=180°+∠A,
    ∴∠P=180°-(180°+∠A)=90°-∠A.
    故答案为:∠P=90°-∠A,
    (3)
    ∠P=180°-∠BAD-∠CDA,
    理由是:如图,

    ∵∠EBC=180°-∠1,∠FCB=180°-∠2,
    ∵BP平分∠EBC,CP平分∠FCB,
    ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
    ∴∠3+∠4=180°-(∠1+∠2),
    ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
    又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
    ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
    【点睛】
    本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
    5、 (1)见解析;
    (2)①3;②
    【解析】
    【分析】
    (1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;
    (2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;
    ②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.
    (1)
    证明:∵点D、E分别是边BC、AC的中点,
    ∴DEAB,BD=CD,
    ∵,
    ∴四边形ABDF是平行四边形,
    ∴AF=BD=CD,
    ∴四边形是平行四边形;
    (2)
    解:①∵点D、E分别是边BC、AC的中点,
    ∴DE=AB,
    ∵四边形是平行四边形,
    ∴DF=2DE=AB=3,
    ∵四边形是矩形,
    ∴AC=DF=3,
    故答案为:3;
    ②∵四边形是菱形,
    ∴DF⊥AC,
    ∵DEAB,
    ∴AB⊥AC,
    ∴AD=BC=2.5,
    ∴AE=EC=2,


    ∴,
    故答案为:.
    【点睛】
    此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题,共26页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试优秀课后测评:

    这是一份初中数学第二十二章 四边形综合与测试优秀课后测评,共28页。试卷主要包含了如图,菱形的对角线,如图,在正方形ABCD中,点E,如图,在中,DE平分,,则等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题,共27页。试卷主要包含了下列说法不正确的是,如图,正方形的边长为,对角线等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map