冀教版八年级下册第二十二章 四边形综合与测试优秀课后作业题
展开
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀课后作业题,共25页。试卷主要包含了下列命题是真命题的有个.,下列关于的叙述,正确的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于( )A.1 B.2 C.3 D.42、若n边形每个内角都为156°,那么n等于( )A.8 B.12 C.15 D.163、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )A.3 B.6 C. D.4、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )A. B. C. D.5、下列多边形中,内角和与外角和相等的是( )A. B. C. D.6、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有( )个.①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.A.1 B.3 C.4 D.57、下列命题是真命题的有( )个.①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.A.1 B.2 C.3 D.48、下列关于的叙述,正确的是( )A.若,则是矩形 B.若,则是正方形C.若,则是菱形 D.若,则是正方形9、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD10、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )A.测量对角线是否互相平分 B.测量一组对角是否都为直角C.测量对角线长是否相等 D.测量3个角是否为直角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、三角形的中位线______于三角形的第三边,并且等于第三边的______.数学表达式:如图,∵AD=BD,AE=EC,∴DE∥BC,且DE=BC.2、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.3、如图,矩形的两条对角线相交于点,已知,,则矩形对角线的长为_______.4、如图,四边形是菱形,与相交于点,添加一个条件:________,可使它成为正方形.5、如图,正方形ABCD的边长为,作正方形A1B1C1D1,使A,B,C,D是正方形A1B1C1D1,各边的中点;做正方形A2B2C2D2,使A1,B1,C1,D1是正方形A2B2C2D2各边的中点…以此类推,则正方形A2021B2021C2021D2021的边长为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.2、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算AC2+BC2的值等于_____;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.3、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,E,F分别是边的中点.(1)若,,,,求的长.小兰说:取的中点P,连接,.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到、、的数量关系,你觉得小花说得对吗?若对,请你帮小花得到、、的数量关系,并说明理由.4、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形5、已知正方形与正方形,,.(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示). -参考答案-一、单选题1、B【解析】【分析】根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.【详解】解:∵四边形ABCD为平行四边形,∴,∴,∵AE平分,∴,∴,∴,∵,∴,故选:B.【点睛】题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.2、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,则n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.3、B【解析】【分析】连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.【详解】解:连接, ∵四边形ABCD是矩形, ∴∠ABC=90°,AC=BD, ∵点是AC的中点, ∴, ∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形, ∴ ∴, ∴是等边三角形, ∴∠BAA'=60°, ∴∠ACB=30°, ∵AB=3, ∴AC=2AB=6, ∴. 即点B与点之间的距离为6. 故选:B.【点睛】本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.4、A【解析】【分析】如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.【详解】解:如图:过C作CE⊥OA,垂足为E,∵菱形OABC,∴OC=OA=4∵,∴∠OCE=30°∵OC=4∴OE=2∴CE= ∴点C的坐标为.故选A.【点睛】本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.5、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设所求多边形的边数为n,根据题意得:(n-2)•180°=360°,解得n=4.故选:B.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.6、C【解析】【分析】证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【详解】解:∵BH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS);∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,∴△NFE是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,∴∠ANB=∠CEA,在△ANB和△CEA中,,∴△ANB≌△CEA(SAS),故①正确;∵AN=CE,NF=EF,∴BF=AF=FC,又∵AF⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),故④正确;∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=BC=2AF=MC+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.7、B【解析】【分析】根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.【详解】解:①一组对边相等的四边形不一定是矩形,错误;②两条对角线相等的平行四边形是矩形,错误;③四条边都相等且对角线互相垂直的四边形是菱形,错误;④四条边都相等的四边形是菱形,正确;⑤一组邻边相等的矩形是正方形,正确.故选:B.【点睛】此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.8、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.【详解】解:中,,四边形是矩形,选项符合题意;中,,四边形是菱形,不一定是正方形,选项不符合题意;中,,四边形是矩形,不一定是菱形,选项不符合题意;中,,四边形是菱形,选项不符合题意;故选:.【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.9、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴,故B正确; ∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.10、D【解析】【分析】矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.【详解】解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;B、测量一组对角是否都为直角,不能判定形状,故不符合题意;C、测量对角线长是否相等,不能判定形状,故不符合题意;D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;故选:D.【点睛】本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.二、填空题1、 平行 一半【解析】略2、3.6##【解析】【分析】首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵将AB边沿AE折叠到AF,∴AB=AF,∠B=∠AFB=90°,在Rt△ABE和Rt△AFB中,,∴Rt△ABE≌Rt△AFB(HL),∴BE=EF,同理可得:DG=FG,∵点G恰为CD边中点,∴DG=FG=3,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,∴BE=EF=2,CE=4,∴S△CEG=×4×3=6,∵EF∶FG=2∶3,∴S△EFC=×6=,∴S△AFC=S△AEC﹣S△AEF﹣S△EFC=×4×6﹣×2×6﹣=12﹣6﹣=3.6.故答案为:3.6.【点睛】本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.3、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.4、【解析】【分析】根据“有一个角是直角的菱形是正方形”可得到添加的条件.【详解】解:由于四边形 是菱形,如果 ,那么四边形是正方形.故答案为: .【点睛】本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.5、【解析】【分析】根据勾股定理求得正方形对角线的长度,然后结合三角形中位线定理求得正方形的边长,从而探索数字变化的规律,进而求解.【详解】由题意得,正方形ABCD中CD=AD=在Rt△ACD中,AC==2∵A,B,C,D是正方形各边的中点,∴正方形的边长为2=在Rt△中==2∵是正方形各边中点∴正方形的边长为2= 以此类推则正方形的边长为 故答案为:【点睛】本题考查勾股定理,正方形性质,探索数字变化的规律是解题关键.三、解答题1、 (1)见解析(2)AE2+ GF2=EG2,证明见解析【解析】【分析】(1)根据“SAS”证明△ADE≌△CDE即可;(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE, 在△ADE和△CDE中,∴△ADE≌△CDE,∴AE=CE;(2)AE2+ GF2=EG2,理由:连接CG∵△ADE≌△CDE,∴∠1=∠2.∵G为FH的中点,∴CG=GF=GH=FH,∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+ GF2=EG2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.2、 11 见解析【解析】【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【详解】解:(1)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,【点睛】本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.3、 (1)(2),理由见解析【解析】【分析】(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;(2)方法同(1).(1)解:如图,取的中点P,连接,, P,E,F分别是边的中点, ,,,,,,,,,在中,,(2),理由如下,如图,取的中点P,连接,, P,E,F分别是边的中点,,,,,,,,在中,,即【点睛】本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.4、证明见解析【解析】【分析】平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.【详解】证明:∵四边形 是平行四边形∴∵∴∵∴四边形为平行四边形又∵∴四边形是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.5、 (1)(2)(3)(4)
相关试卷
这是一份2020-2021学年第二十二章 四边形综合与测试精品课时练习,共29页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题,共25页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题,共27页。试卷主要包含了六边形对角线的条数共有,如图,正方形的边长为,对角线等内容,欢迎下载使用。