冀教版八年级下册第二十二章 四边形综合与测试优秀同步达标检测题
展开
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀同步达标检测题,共26页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为( )A.22.5° B.27.5° C.30° D.35°2、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.163、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )A.线段的长逐渐增大 B.线段的长逐渐减少C.线段的长不变 D.线段的长先增大后变小4、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )A. B. C. D.5、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )A.1 B. C. D.6、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )A.①②③ B.②③④ C.①②④ D.①④7、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD8、下列说法不正确的是( )A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直9、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形 B.菱形 C.正方形 D.梯形10、下列多边形中,内角和与外角和相等的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,是长方形地面,长,宽,中间竖有一堵砖墙高.一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走______的路程.2、如图,正方形ABCD的边长为,作正方形A1B1C1D1,使A,B,C,D是正方形A1B1C1D1,各边的中点;做正方形A2B2C2D2,使A1,B1,C1,D1是正方形A2B2C2D2各边的中点…以此类推,则正方形A2021B2021C2021D2021的边长为 _____.3、一个多边形的每个内角都等于120°,则这个多边形的边数是______.4、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.5、如图,在平行四边形ABCD中,AC⊥BC,E为AB中点,若CE=3,则CD=____.三、解答题(5小题,每小题10分,共计50分)1、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点(1)求证:四边形BDEG是平行四边形;(2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.2、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.3、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.4、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?5、如图,在菱形ABDE中,,点C是边AB的中点,点P是对角线AD上的动点(可与点A,D重合),连接PC,PB.已知,若要,求AP的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP长为xcm,PC长为,PB长为.分别对函数,随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,表格中的______;x/cm01234561.731.001.00a2.643.614.583.462.642.001.732.002.643.46(2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;(3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是____________;请根据图象估计当______时,PC取到最小值.(请保留点后两位) -参考答案-一、单选题1、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.2、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.3、C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【详解】解:连接.、分别是、的中点,为的中位线,,为定值.线段的长不改变.故选:.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.4、A【解析】【分析】取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.【详解】解:如图,取OD的中点H,连接HP∵四边形ABCD是菱形∴AC⊥BD,AO=CO=4,OB=OD=6∵点H是OD中点,点E是OB的中点,点P是CD的中点∴OH=3,OE=3,,∴EH=6,在中,由勾股定理可得:∴故选:A【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.5、C【解析】【分析】证明,则,计算的长,得,证明是等腰直角三角形,可得的长.【详解】解:四边形是正方形,,,,,,,,,,,,,是等腰直角三角形,,故选:C.【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.6、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.7、B【解析】略8、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.9、B【解析】【分析】根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.【详解】展得到的图形如上图,由操作过程可知:AB=CD,BC=AD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故选:B.【点睛】本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.10、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设所求多边形的边数为n,根据题意得:(n-2)•180°=360°,解得n=4.故选:B.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.二、填空题1、【解析】【分析】根据题意,将长方形底面和中间墙展开为平面图,并连接BD,根据两点之间直线段最短和勾股定理的性质计算,即可得到答案.【详解】将长方形底面和中间墙展开后的平面图如下,并连接BD根据题意,展开平面图中的∴一只蚂蚱从点爬到点,最短路径长度为展开平面图中BD长度∵是长方形地面∴ ∴ 故答案为:.【点睛】本题考查了立体图形展开图、矩形、两点之间直线段最短、勾股定理的知识;解题的关键是熟练掌握立体图形展开图、勾股定理的知识,从而完成求解.2、【解析】【分析】根据勾股定理求得正方形对角线的长度,然后结合三角形中位线定理求得正方形的边长,从而探索数字变化的规律,进而求解.【详解】由题意得,正方形ABCD中CD=AD=在Rt△ACD中,AC==2∵A,B,C,D是正方形各边的中点,∴正方形的边长为2=在Rt△中==2∵是正方形各边中点∴正方形的边长为2= 以此类推则正方形的边长为 故答案为:【点睛】本题考查勾股定理,正方形性质,探索数字变化的规律是解题关键.3、6【解析】【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.4、(0,-5)【解析】【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,,∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.5、6【解析】【分析】由AC⊥BC,E为AB中点,若CE=3,根据直角三角形斜边的中线等于斜边的一半,可求得AB的长,然后由平行四边形的性质,求得答案.【详解】解:∵AC⊥BC,E为AB中点,∴AB=2CE=2×3=6,∵四边形ABCD是平行四边形,∴CD=AB=6.故答案为:6.【点睛】此题考查了平行四边形的性质以及直角三角形的性质.注意平行四边形的对边相等.三、解答题1、 (1)证明见解析(2)10【解析】【分析】(1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;(2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.(1)证明:∵AC平分∠BAD,AB∥CD,∴∠DAC=∠BAC,∠DCA=∠BAC,∴∠DAC=∠DCA,∴AD=DC,又∵AB∥CD,AB=AD,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形.(2)解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,对角线AC=24,∴CD=13,AO=CO=12,∵点E、F分别是边CD、BC的中点,∴EF∥BD(中位线),∵AC、BD是菱形的对角线,∴AC⊥BD,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∵四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴,∴EG=BD=10.【点睛】本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.2、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:,解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..3、 (1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE===3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴ ,在 中, ,∴ ,∴ .【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.4、 (1)见解析(2)当AD=AB时,四边形BEDH是正方形【解析】【分析】(1)要证明AF=CG,只要证明△EAF≌△HCG即可;(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠BCD,∴∠AEF=∠CHG,∵BE=2AB,DH=2CD,∴BE=DH,∴BE-AB=DH-DC,∴AE=CH,∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH,∴△EAF≌△HCG(ASA),∴AF=CG;(2)解:当AD=AB时,四边形BEDH是正方形;理由:∵BE∥DH,BE=DH,∴四边形EBHD是平行四边形,∵EH⊥BD,∴四边形EBHD是菱形,∴ED=EB=2AB,当AE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,∴AD=AB,∴当AD=AB时,四边形BEDH是正方形..【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.5、 (1)(2)见解析(3)0≤AP≤3,1.50【解析】【分析】(1)证明△PAB为直角三角形,再根据勾股定理得出,而点C是线段AB的中点,即可求解;(2)描点绘出函数图象即可;(3)观察分析函数图象即可求解.(1)解:在菱形ABDE中,AB=BD∵,∴,∵AD=6当x=AP=3时,则P为AD的中点∴,∴AB=2BP,,∴,∵点C是边AB的中点,∴,即(2)描点绘出函数图象如下(0≤x≤6)(3)当PC的长度不大于PB长度时,即y1≤y2,从图象看,此时,0≤x≤3,即0≤AP≤3,从图象看,当x大约为1.50时,y1即PC取到最小值;故答案为:0≤AP≤3;1.50.【点睛】本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共23页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
这是一份数学八年级下册第二十二章 四边形综合与测试测试题,共25页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步达标检测题,共25页。试卷主要包含了下列说法不正确的是,如图,正方形的边长为,对角线等内容,欢迎下载使用。