搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练冀教版八年级数学下册第二十二章四边形专题练习试题(精选)

    2022年强化训练冀教版八年级数学下册第二十二章四边形专题练习试题(精选)第1页
    2022年强化训练冀教版八年级数学下册第二十二章四边形专题练习试题(精选)第2页
    2022年强化训练冀教版八年级数学下册第二十二章四边形专题练习试题(精选)第3页
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试精品测试题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品测试题,共26页。试卷主要包含了下列说法正确的是,下列说法不正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点ABC在同一直线上,且,点DE分别是ABBC的中点.分别以ABDEBC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,若,则等于(       A. B. C. D.2、如图,平行四边形ABCD的对角线ACBD相交于点O,下列结论错误的是(  )A.AOCO B.ADBC C.ADBC D.∠DAC=∠ACD3、下列关于的叙述,正确的是(       A.若,则是矩形 B.若,则是正方形C.若,则是菱形 D.若,则是正方形4、下列说法正确的是(  )A.只有正多边形的外角和为360°B.任意两边对应相等的两个直角三角形全等C.等腰三角形有两条对称轴D.如果两个三角形一模一样,那么它们形成了轴对称图形5、若n边形每个内角都为156°,那么n等于(       A.8 B.12 C.15 D.166、在菱形ABCD中,对角线ACBD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是(  )A.6 B.12 C.24 D.487、下列说法不正确的是(       A.三角形的外角大于每一个与之不相邻的内角B.四边形的内角和与外角和相等C.等边三角形是轴对称图形,对称轴只有一条D.全等三角形的周长相等,面积也相等8、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是(       A.1 B.4 C.2 D.69、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为(       A.3 B.4 C.5 D.610、如图,四边形中,,对角线相交于点于点于点,连接,若,则下列结论:③四边形是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是(       A.4 B.3 C.2 D.1第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在菱形ABCD中,点MN分别交于ABCD上,AM=CNMNAC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.2、如图, 在矩形中, 对角线相交于点,若,则的长为_____3、如图,RtABC中,∠BAC=90°,DEF分别为ABBCAC的中点,已知DF=5,则AE=_____.4、已知一个多边形的内角和为,则这个多边形是________边形.5、(1)两组对边分别________的四边形是平行四边形ABCDADBC∴四边形ABCD是平行四边形 (2)两组对边分别________的四边形是平行四边形ABCDADBC∴四边形ABCD是平行四边形 (3)两组对角分别________的四边形是平行四边形∵∠A= ∠CB=∠D∴四边形ABCD是平行四边形 (4)对角线________的四边形是平行四边形AOCOBODO∴四边形ABCD是平行四边形 (5)一组对边________的四边形是平行四边形ADBCADBC∴四边形ABCD是平行四边形三、解答题(5小题,每小题10分,共计50分)1、如图,在中,于点E,延长BC至点F,使,连接AFDEDF(1)求证:四边形AEFD为矩形;(2)若,求DF的长.2、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.3、已知:线段m求作:矩形ABCD,使矩形宽ABm,对角线ACm4、已知:△ABCADBC边上的中线,点MAD上一动点(不与点A重合),过点MME∥AB,过点CCEAD,连接AE(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;(3)如图3,延长BMAC于点N,若点MAD的中点,求的值.5、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点AB均在小正方形的顶点上.(1)在图中画出等腰ABC,且ABC为钝角三角形,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDEDE都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为      -参考答案-一、单选题1、B【解析】【分析】BEx,根据正方形的性质、平行四边形的面积公式分别表示出S1S2S3,根据题意计算即可.【详解】 AB=2BC又∵点DE分别是ABBC的中点,∴设BEx,则ECxADBD=2x∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,BDDH=2xS1DHAD,即2x•2xx2BD=2xBExS2MHBD=(3x−2x)•2x=2x2S3ENBExxx2S2S3=2x2x2=3x2故选:B【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.2、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,AOOC,故A正确;,故B正确; ADBC,故C正确;故选:D【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.3、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项错误,正确;即可得出结论.【详解】解:中,四边形是矩形,选项符合题意;中,四边形是菱形,不一定是正方形,选项不符合题意;中,四边形是矩形,不一定是菱形,选项不符合题意;中,四边形是菱形,选项不符合题意;故选:【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.4、B【解析】【分析】选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.【详解】解:A.所有多边形的外角和为,故本选项不合题意;B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;C.等腰三角形有1条对称轴,故本选项不合题意;D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;故选:B.【点睛】此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.5、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.6、C【解析】【分析】利用菱形的面积公式即可求解.【详解】解:菱形ABCD的面积==24,故选:C.【点睛】本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.7、C【解析】【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.【详解】∵三角形的外角大于每一个与之不相邻的内角,正确,A不符合题意;∵四边形的内角和与外角和都是360°,∴四边形的内角和与外角和相等,正确,B不符合题意;∵等边三角形是轴对称图形,对称轴有三条,∴等边三角形是轴对称图形,对称轴只有一条,错误,C符合题意;∵全等三角形的周长相等,面积也相等,正确,D不符合题意;故选C【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.8、C【解析】9、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCDAB=AD,∠BAC=DACAE=AE,∴△ABE≌△ADE=5,同理CBE≌△CDECDE的面积为: =3,故选A【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.10、B【解析】【分析】DE=BF以及DF=BE,可证明RtDCFRtBAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.【详解】解:中,,(故①正确);于点于点四边形是平行四边形,,(故②正确);四边形是平行四边形,(故③正确);由以上可得出:等.(故④错误),故正确的有3个,故选:【点评】此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.二、填空题1、28【解析】【分析】由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BOAC,即可求解.【详解】解:∵四边形ABCD是菱形,AB//CDAB=BCBC//AD∴∠MAO=∠NCO,∠BCA=∠CAD在△AOM和△CON中,∴△AOM≌△CONAAS),AO=CO又∵AB=BCBOAC∴∠BCO=90°﹣∠OBC=28°=∠DAC故答案为:28.【点睛】本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.2、8【解析】【分析】由四边形为矩形,根据矩形的对角线互相平分且相等,可得,由,根据有一个角为的等腰三角形为等边三角形可得三角形为等边三角形,根据等边三角形的每一个角都相等都为可得出,在直角三角形中,根据直角三角形的两个锐角互余可得,根据角所对的直角边等于斜边的一半,由的长可得出的长.【详解】解:四边形为矩形,,且为等边三角形,在直角三角形中,故答案为:8.【点睛】此题考查了矩形的性质,等边三角形的判定与性质,以及含角直角三角形的性质,熟练掌握矩形的性质是解觉本题的关键.3、5【解析】【分析】依题意,可得DF是△ABC的中位线,得到BC的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;【详解】DF分别为ABAC的中点,DF是△ABC的中位线,BC2DF10RtABC中,EBC的中点,故答案为:5【点睛】本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;4、八##8【解析】【分析】n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据n边形的内角和公式,得n-2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:八.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.5、     平行     相等     相等     互相平分     平行且相等【解析】三、解答题1、 (1)见解析(2)【解析】【分析】(1)根据线段的和差关系可得BCEF,根据平行四边形的性质可得ADBCADBC,即可得出ADEF,可证明四边形AEFD为平行四边形,根据AEBC即可得结论;(2)根据矩形的性质可得AFDE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)BECFBE+CECF+CE,即BCEFABCD是平行四边形,ADBCADBCADEFADEF∴四边形AEFD为平行四边形,AEBC∴∠AEF=90°,∴四边形AEFD为矩形.(2)∵四边形AEFD为矩形,AFDE=4,DF=AEAB2+AF2BF2∴△BAF为直角三角形,∠BAF=90°,AE=【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.2、150°【解析】【分析】先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.3、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过ABC的平行线AD,过CAB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结ACABC的平行线,与过CAB的平行线交于D则四边形ABCD为所求作矩形; ADBCCDAB∴四边形ABCD为平行四边形,BCAB∴∠ABC=90°,∴四边形ABCD为矩形,AB=AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.4、 (1)①见解析;②见解析(2)是,见解析(3)【解析】【分析】(1)①根据DEAB,得出∠EDC=∠ABM,根据CEAM,∠ECD=∠ADB,根据AM是△ABC的中线,且DM重合,得出BDDC,再证△ABD≌△EDCASA)即可;②由①得△ABD≌△EDC,得出ABED,根据ABED,即可得出结论.(2)如图,设延长BMEC于点F,过MML∥DCCFL,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证BMD≌△MFLAAS),再证ABM≌△EMFASA),可证四边形ABME是平行四边形;(3)过点DDGBNAC于点G,根据MAD的中点,DGMN,得出MN为三角形中位线MNDG,根据DBC的中点,得出DGBN,可得MNBN,可求即可.(1)证明:①∵DEAB∴∠EDC=∠ABMCEAM∴∠ECD=∠ADBAMABC的中线,且DM重合,BDDCABDEDC中,∴△ABD≌△EDCASA),ABM≌△EMC②由①得ABD≌△EDCABEDABED∴四边形ABDE是平行四边形;(2)成立.理由如下:如图,设延长BMEC于点F,过MML∥DCCFLADECML∥DC∴四边形MDCL为平行四边形,ML=DC=BDML∥DC∴∠FML=∠MBD   ADEC∴∠BMD=∠MFL,∠AMB=∠EFM,在△BMD和△MFL∴△BMD≌△MFLAAS),BM=MF ,AB∥ME∴∠ABM=∠EMF在△ABM和△EMF中,∴△ABM≌△EMFASA),ABEMAB∥EM∴四边形ABME是平行四边形;(3)解:过点DDGBNAC于点GMAD的中点,DGMNMNDGDBC的中点,DGBNMNBN由(2)知四边形ABME为平行四边形,BMAE【点睛】本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.5、 (1)见解析(2)画图见解析,【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;(2)解:如图,矩形BCDE即为所求.AE= 故答案为:【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试当堂检测题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试当堂检测题,共28页。试卷主要包含了如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试优秀同步训练题:

    这是一份初中数学第二十二章 四边形综合与测试优秀同步训练题,共29页。试卷主要包含了在中,若,则的度数是,已知,如图,E,下列说法不正确的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题,共33页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map