初中数学第二十二章 四边形综合与测试优秀测试题
展开
这是一份初中数学第二十二章 四边形综合与测试优秀测试题,共26页。
八年级数学下册第二十二章四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )A. B.C. D.2、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )A.80° B.90° C.100° D.110°3、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )A.4 B.6 C.8 D.124、如图,DE是的中位线,若,则BC的长为( )A.8 B.7 C.6 D.7.55、一个多边形的每个内角均为150°,则这个多边形是( )A.九边形 B.十边形 C.十一边形 D.十二边形6、在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是( )A.∠ABC=90° B.AC⊥BD C.AB=CD D.AB∥CD7、将一长方形纸条按如图所示折叠,,则( )A.55° B.70° C.110° D.60°8、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为( )A. B.8 C. D.9、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )A.20 B.40 C.60 D.8010、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )A.3 B.6 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,,射线AF是的平分线,交BC于点D,过点B作AB的垂线与射线AF交于点E,连结CE,M是DE的中点,连结BM并延长与AC的延长线交于点G.则下列结论正确的是______.① ②BG垂直平分DE ③ ④ ⑤2、如图,点M,N分别是的边AB,AC的中点,若,,则______.3、两组对边分别________的四边形叫做平行四边形.平行四边形不相邻的两个顶点连成的线段叫它的________.如图所示的四边形ABCD是平行四边形.记作:________,读作:平行四边形ABCD线段________、________就是平行四边形ABCD的对角线.平行四边形相对的边,称为 ________,相对的角称为________.对边:AB与CD;BC与DA.对角:∠ABC与∠CDA;∠BAD与∠DCB.4、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm2.5、如图,四边形ABCD是平行四边形,BE平分∠ABC,与AD交于点E,BC=5,DE=2,则AB的长为 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.(1)若∠BAE=50°,求∠DGF的度数;(2)求证:DF=DC.2、已知:线段m.求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.3、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形4、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.5、(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长. -参考答案-一、单选题1、C【解析】【分析】根据矩形的判定定理判断即可.【详解】∵A满足的条件是有一个角是直角的平行四边形是矩形,∴A合格,不符合题意;∵B满足的条件是三个角是直角的四边形是矩形,∴B合格,不符合题意;∵C满足的条件是有一个角是直角的四边形,∴无法判定,C不合格,符合题意;∵D满足的条件是有一个角是直角的平行四边形是矩形,∴D合格,不符合题意;故选C.【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.2、B【解析】【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD=∠A′BE+∠DBC′=180°×=90°.故选B.【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.3、B【解析】【分析】根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.【详解】解:四边形为菱形,,,,,,∴,∴,∴故选:.【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.4、A【解析】【分析】已知DE是的中位线,,根据中位线定理即可求得BC的长.【详解】是的中位线,,,故选:A.【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.5、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.6、B【解析】略7、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,,,.故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.8、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD==13,又∵E是边AD的中点,∴OE=AD=×13=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.9、B【解析】【分析】根据菱形的面积公式求解即可.【详解】解:这个菱形的面积=×10×8=40.故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.10、B【解析】【分析】连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.【详解】解:连接, ∵四边形ABCD是矩形, ∴∠ABC=90°,AC=BD, ∵点是AC的中点, ∴, ∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形, ∴ ∴, ∴是等边三角形, ∴∠BAA'=60°, ∴∠ACB=30°, ∵AB=3, ∴AC=2AB=6, ∴. 即点B与点之间的距离为6. 故选:B.【点睛】本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.二、填空题1、①②⑤【解析】【分析】先由题意得到∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,再由角平分线的性质得到∠BAE=∠DAC=22.5°,从而推出∠BEA=∠ADC,则∠BDE=∠BED,再由三线合一定理即可证明BM⊥DE,∠GBE=∠DBG,即可判断②;得到∠MAG+∠MGA=90°,再由∠CBG+∠CGB=90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BE交AC延长线于G,先证△ABH是等腰直角三角形,得到C为AH的中点,然后证BE≠HE,即E不是BH的中点,得到CE不是△ABH的中位线,则CE与AB不平行,即可判断③.【详解】解:∵∠ACB=90°,BE⊥AB,AC=BC,∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,∵AF平分∠BAC,∴∠BAE=∠DAC=22.5°,∴∠BEA=∠ADC,又∵∠ADC=∠BDE,∴∠BDE=∠BED,∴BD=ED,又∵M是DE的中点,∴BM⊥DE,∠GBE=∠DBG,∴BG垂直平分DE,∠AMG=90°,故②正确,∴∠MAG+∠MGA=90°,∵∠CBG+∠CGB=90°,∴∠DAC=∠GBC=22.5°,∴∠GBE=22.5°,∴2∠GBE=45°,又∵AC=BC,∴△ACD≌△BCG(ASA),故①正确;∴CD=CG,∵AC=BC=BD+CD,∴AC=BE+CG,故⑤正确;∵∠G=180°-∠BCG-∠CBG=67.5°,∴∠G≠2∠GBE,故④错误;如图所示,延长BE交AC延长线于G,∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,∴△ABH是等腰直角三角形,∵BC⊥AH,∴C为AH的中点,∵AB≠AH,AF是∠BAH的角平分线,∴BE≠HE,即E不是BH的中点,∴CE不是△ABH的中位线,∴CE与AB不平行,∴BE与CE不垂直,故③错误;故答案为:①②⑤.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.2、45°##45度【解析】【分析】根据三角形中位线定理得出,进而利用平行线的性质解答即可.【详解】解:、分别是的边、的中点,,,,,,,故答案是:.【点睛】本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.3、 平行 对角线 AC BD 对边 对角【解析】略4、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,..,根据勾股定理可知:..解得:.的面积为:.故答案为:.【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.5、3【解析】【分析】根据平行四边形的性质可得,,结合图形,利用线段间的数量关系可得,由平行线及角平分线可得,,得出,根据等角对等边即可得出结果.【详解】解:∵四边形ABCD为平行四边形,∴,,∵,∴,∵,BE平分,∴,,∴,∴,故答案为:3.【点睛】题目主要考查平行四边形的性质,利用角平分线计算及平行线的性质,等角对等边求边长等,理解题意,结合图形,综合运用这些知识点是解题关键.三、解答题1、 (1)∠DGF=25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,∴∠BAE=∠DAG=50°,∴∠AGD=∠ADG==65°,∴∠DGF=90°-65°=25°;(2)证明:连接AF,由旋转得矩形AEFG≌矩形△ABCD,∴AF=BD,∠FAE=∠ABE=∠AEB,∴AF∥BD,∴四边形ABDF是平行四边形,∴DF=AB=DC.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.2、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB,以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,过A作BC的平行线,与过C作AB的平行线交于D,则四边形ABCD为所求作矩形; ∵AD∥BC,CD∥AB,∴四边形ABCD为平行四边形,∵BC⊥AB,∴∠ABC=90°,∴四边形ABCD为矩形,∵AB=,AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.3、证明见解析【解析】【分析】平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.【详解】证明:∵四边形 是平行四边形∴∵∴∵∴四边形为平行四边形又∵∴四边形是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.4、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.5、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则,,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转至,如图1,,,,,,,三点共线,,,,,,,,;(2)①不成立,结论:;证明:如图2,将绕点顺时针旋转至,,,,,,,,;②如图3,将绕点逆时针旋转至,,,,,,,,,.即.故答案为:.(3)解:由(1)可知,正方形的边长为6,,.,,设,则,,在中,,,解得:.,.【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习,共31页。试卷主要包含了如图,在中,DE平分,,则等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课后测评,共32页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题,共32页。