![难点详解冀教版八年级数学下册第二十二章四边形定向攻克试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734856/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十二章四边形定向攻克试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734856/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十二章四边形定向攻克试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734856/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀练习题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀练习题,共32页。试卷主要包含了在中,若,则的度数是,如图,正方形的边长为,对角线,如图,在中,DE平分,,则等内容,欢迎下载使用。
八年级数学下册第二十二章四边形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD2、菱形周长为20,其中一条对角线长为6,则菱形面积是( )A.48 B.40 C.24 D.123、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )A.6 B.7 C.8 D.94、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )A.7 B.6 C.4 D.85、在中,若,则的度数是( )A. B. C. D.6、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )A.14 B.16 C.18 D.127、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )A. B. C. D.8、如图,在中,DE平分,,则( )A.30° B.45° C.60° D.80°9、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)10、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )A.8 B.10 C.12 D.16第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,BC=12,则EF的长为__________.2、已知平行四边形ABCD的周长是30,若AB=10,则BC=________.3、如图,正方形的对角线、相交于点O,等边绕点O旋转,在旋转过程中,当时,的度数为____________.4、如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______5、如图,正方形ABCD的边长为4,E是BC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.2、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交于点E.AB=6cm,BC=8cm.(1)求证AE=EC;(2)求阴影部分的面积.3、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,E,F分别是边的中点.(1)若,,,,求的长.小兰说:取的中点P,连接,.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到、、的数量关系,你觉得小花说得对吗?若对,请你帮小花得到、、的数量关系,并说明理由.4、(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.5、如图,已知正方形ABCD,点E在边BC上,连接AE.(1)尺规作图:作,使,点F是的边与线段AB的交点.(不写作法,保留作图痕迹);(2)探究:AE,DF的位置关系和数量关系,并说明理由. -参考答案-一、单选题1、B【解析】略2、C【解析】【分析】由菱形对角线互相垂直且平分的性质、结合勾股定理解得,继而解得AC的长,最后根据菱形的面积公式解题.【详解】解:如图,,菱形的周长为20,,四边形是菱形,,,,由勾股定理得,则,所以菱形的面积.故选:C.【点睛】本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.3、D【解析】【分析】由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.【详解】解:∵正方形ABCD的对角线AC,BD交于点O,∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.∵∠MOB+∠BON=90°,∠BON+∠CON=90°∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,∴△BOM≌△CON(ASA),=S△BOM,∴,∵=S正方形ABCD,正方形的边长,,∴=S正方形ABCD -=.故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.4、A【解析】【分析】如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接AC,OB交于点D,∵C是直线与y轴的交点,∴点C的坐标为(0,2),∵OA=4,∴A点坐标为(4,0),∵四边形OABC是矩形,∴D是AC的中点,∴D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,∴,∴,故选A.【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.5、B【解析】【分析】利用平行四边形的对角相等即可选择正确的选项.【详解】解:四边形是平行四边形,,,,故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.6、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.【详解】解:在正方形ABCD中,,,,∵F为DE的中点,O为BD的中点,∴OF为的中位线且CF为斜边上的中线,∴,∴的周长为,∵,∴,∵,∴,∴,在中,,,,∴,∴的周长为,故选:B.【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.7、C【解析】【分析】根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长【详解】解:如图,设的交点为,四边形是正方形,,,, ,,在与中在中,故选C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.8、C【解析】【分析】根据平行四边形的性质得,故,由DE平分得,即可计算.【详解】∵四边形ABCD是平行四边形,∴,∴,∵DE平分,∴,∴.故选:C.【点睛】本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.9、B【解析】【分析】分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标【详解】如图,分别过点和点作轴于点,作轴于点,∴,∵四边形为菱形,∴点为的中点,∴点为的中点,∴,,∵,∴;由题意知菱形绕点逆时针旋转度数为:,∴菱形绕点逆时针旋转周,∴点绕点逆时针旋转周,∵,∴旋转60秒时点的坐标为.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.10、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA′==16,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.二、填空题1、4【解析】【分析】根据平行四边形的性质可得,由角平分线可得,所以,所以,同理可得,则根据即可求解.【详解】∵四边形是平行四边形,∴,,,∴,∴平分,∴,∴,∴,同理可得,∴.故答案为:4【点睛】本题主要考查了平行四边形的性质、角平分线的定义,转化线段是解题的关键.2、5【解析】略3、或【解析】【分析】分两种情况:①根据正方形与等边三角形的性质得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判断△ODE≌△OCF,则∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可证得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.【详解】解:情况1,如下图:∵四边形ABCD是正方形,∴OD=OC,∠AOD=∠COD=90°,∵△OEF是等边三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOF=∠COE,∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,∴∠AOF=∠AOD+∠DOF=90°+15°=105°;情况2,如下图:连接DE、CF,∵四边形ABCD为正方形,∴OC=OD,∠AOD=∠COB=90°,∵△OEF为等边三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,∴∠BOF=∠COF-∠COB=105°-90°=15°,∴∠AOF=∠AOB-∠BOF=90°-15°=75°,故答案为:105°或75°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等边三角形的性质,全等三角形的判定与性质,做题的关键是注意两种情况和证三角形全等.4、或【解析】【分析】分两种情况分析:当点E在BC下方时记点E为点,点E在BC上方时记点E为点,连接,,根据垂直平分线的性质得,,由正方形的性质得,,由旋转得,,故,是等边三角形,,是等腰三角形,由等边三角形和等腰三角形的求角即可.【详解】如图,当点E在BC下方时记点E为点,连接,∵点落在边AD的垂直平分线,∴,∵四边形ABCD是正方形,∴,∵BC绕点C旋转得,∴,∴是等边三角形,是等腰三角形,∴,,∴,∴,当点E在BC上方时记点E为点,连接,∵点落在边AD的垂直平分线,∴,∵四边形ABCD是正方形,∴,,∵BC绕点C旋转得,∴,∴是等边三角形,是等腰三角形,∴,,∴,∴.故答案为:或.【点睛】本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.5、【解析】【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【详解】解:如图,连接AE,PA,∵四边形ABCD是正方形,BD为对角线,∴点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为4,E是BC边的中点,∴BE=2,∴AE=,故答案为:.【点睛】本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.三、解答题1、 (1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE===3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴ ,在 中, ,∴ ,∴ .【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.2、 (1)证明见解析(2)【解析】【分析】(1)先根据折叠的性质可得,再根据矩形的性质、平行线的性质可得,从而可得,然后根据等腰三角形的判定即可得证;(2)设,从而可得,先在中,利用勾股定理可得的值,再利用三角形的面积公式即可得.(1)证明:由折叠的性质得:,四边形是长方形,,,,.(2)解:四边形是长方形,,设,则,在中,,即,解得,即,则阴影部分的面积为.【点睛】本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.3、 (1)(2),理由见解析【解析】【分析】(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;(2)方法同(1).(1)解:如图,取的中点P,连接,, P,E,F分别是边的中点, ,,,,,,,,,在中,,(2),理由如下,如图,取的中点P,连接,, P,E,F分别是边的中点,,,,,,,,在中,,即【点睛】本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.4、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则,,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转至,如图1,,,,,,,三点共线,,,,,,,,;(2)①不成立,结论:;证明:如图2,将绕点顺时针旋转至,,,,,,,,;②如图3,将绕点逆时针旋转至,,,,,,,,,.即.故答案为:.(3)解:由(1)可知,正方形的边长为6,,.,,设,则,,在中,,,解得:.,.【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.5、 (1)见解析;(2),,见解析【解析】【分析】(1)根据题意作出即可;(2)证明即可得结论.(1)如图,即为所求.(2),.∵四边形ABCD是正方形,∴,.在和中, ∴(AAS),∴.∵,.∴,即.【点睛】本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀巩固练习,共25页。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题,共31页。试卷主要包含了如图,E等内容,欢迎下载使用。
这是一份数学第二十二章 四边形综合与测试精品同步达标检测题,共25页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。