![难点详解冀教版八年级数学下册第二十二章四边形单元测试试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12734864/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十二章四边形单元测试试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12734864/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十二章四边形单元测试试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12734864/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第二十二章 四边形综合与测试精品单元测试课后测评
展开
这是一份初中冀教版第二十二章 四边形综合与测试精品单元测试课后测评,共32页。试卷主要包含了下列命题不正确的是,在中,若,则的度数是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将一长方形纸条按如图所示折叠,,则( )
A.55° B.70° C.110° D.60°
2、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
3、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
4、如图,在平面直角坐标系中,直线分别交x轴,y轴于A、B两点,C为线段OB上一点,过点C作轴交l于点D,若的顶点E恰好落在直线上,则点C的坐标为( )
A. B. C. D.
5、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )
A. B. C. D.
6、下列命题不正确的是( )
A.三边对应相等的两三角形全等
B.若,则
C.有一组对边平行、另一组对边相等的四边形是平行四边形
D.的三边为a、b、c,若,则是直角三角形.
7、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为( )
A.2 B.3 C.4 D.5
8、小明想判断家里的门框是否为矩形,他应该( )
A.测量三个角是否都是直角 B.测量对角线是否互相平分
C.测量两组对边是否分别相等 D.测量一组对角是否是直角
9、在中,若,则的度数是( )
A. B. C. D.
10、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为( )
A.1 B.2 C. D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.
2、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.
3、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
4、若一个多边形的内角和是外角和的倍,则它的边数是_______.
5、如图,菱形ABCD的边长为4,∠BAD=120°,E是边CD的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60°得到线段EF',连接AF'、BF',则△ABF'的周长的最小值是________________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD、DF的长;
(2)如图①,连接EF,求证四边形AEFD是平行四边形;
(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
2、已知:线段m.
求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
3、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.
(1)如图1,CDOB,CD=OA,连接AD,BD.
① ;
②若OA=2,OB=3,则BD= ;
(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
4、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.
(1)求证:四边形是平行四边形:
(2)若.
①当___________时,四边形是矩形;
②若四边形是菱形,则________.
5、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.
(1)请证明“射影定理”中的结论③.
(2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.
①求证:.
②若,求的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
从折叠图形的性质入手,结合平行线的性质求解.
【详解】
解:由折叠图形的性质结合平行线同位角相等可知,,
,
.
故选:B.
【点睛】
本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.
2、A
【解析】
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
3、D
【解析】
略
4、D
【解析】
【分析】
设点 ,根据轴,可得点 ,再根据平行四边形的性质可得点轴, ,则, ,即可求解.
【详解】
解:设点 ,
∵轴,
∴点 ,
∵四边形是平行四边形,
∴轴, ,
∴点 ,
∴ ,
∵直线分别交y轴于B两点,
∴当 时, ,
∴点 ,
∴ ,
∴,解得: ,
∴ ,
∴点 .
故选:D
【点睛】
本题主要考查了一次函数的图形和性质,平行四边形的性质,熟练掌握一次函数的图形和性质,平行四边形的性质,利用数形结合思想解答是解题的关键.
5、A
【解析】
【分析】
取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.
【详解】
解:如图,取OD的中点H,连接HP
∵四边形ABCD是菱形
∴AC⊥BD,AO=CO=4,OB=OD=6
∵点H是OD中点,点E是OB的中点,点P是CD的中点
∴OH=3,OE=3,,
∴EH=6,
在中,由勾股定理可得:
∴
故选:A
【点睛】
本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.
6、C
【解析】
【分析】
根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
【详解】
解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
B、若,则,此命题正确,不符题意;
C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
故选:C.
【点睛】
本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
7、A
【解析】
【分析】
由正方形1性质和勾股定理得,再由,得,则,即可解决问题.
【详解】
解:设大正方形的边长为,
大正方形的面积是18,
,
,
,
,
,
小正方形的面积,
故选:A.
【点睛】
本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出.
8、A
【解析】
【分析】
根据矩形的判定方法解题.
【详解】
解:A、三个角都是直角的四边形是矩形,
选项A符合题意;
B、对角线互相平分的四边形是平行四边形,
选项B不符合题意,
C、两组对边分别相等的四边形是平行四边形,
选项C不符合题意;
D、一组对角是直角的四边形不是矩形,
选项D不符合题意;
故选:A.
【点睛】
本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
9、B
【解析】
【分析】
利用平行四边形的对角相等即可选择正确的选项.
【详解】
解:四边形是平行四边形,
,
,
,
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.
10、C
【解析】
【分析】
根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAE=∠ADF=90°,
在△ABE与△DAF中,
,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∴∠ABE+∠BAO=∠DAF+∠BAO=90°,
∴∠AOB=90°,
∵△ABE≌△DAF,
∴S△ABE=S△DAF,
∴S△ABE-S△AOE=S△DAF-S△AOE,
即S△ABO=S四边形OEDF=1,
∵OA=1,
∴BO=2,
∴AB=,
故选:C.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
二、填空题
1、
【解析】
【分析】
在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.
【详解】
解:在上取一点,使得,连接,,作直线交于,过点作于.
,,
是等边三角形,
,,
,,
是等边三角形,
,,
,
,
在和中,
,
,
,
,
点在射线上运动,
根据垂线段最短可知,当点与重合时,的值最小,
,,
,,
,
∴GT//AB
∵BG//AT
四边形是平行四边形,
,,
∴
在中,
∴
,
的最小值为,
故答案为:.
【点睛】
本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
2、6
【解析】
【分析】
利用多边形的外角和以及多边形的内角和定理即可解决问题.
【详解】
解:多边形的外角和是360度,多边形的内角和是外角和的2倍,
则内角和是720度,
,
这个多边形的边数为6.
故答案为:6.
【点睛】
本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.
3、20
【解析】
【分析】
根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
【详解】
解:如图,过B作BE⊥AC于E.
在直角三角形ABE中,
∠BAC=30°,AB=5,
∴BE=AB=,
S△ABC=AC•BE=10,
∴S▱ABCD=2S△ABC=20(cm2).
故答案为:20.
【点睛】
本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
4、
【解析】
【分析】
根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.
【详解】
解:设这个多边形的边数是n,
根据题意得,(n−2)•180°=2×360°,
解得n=6.
答:这个多边形的边数是6.
故答案为:6.
【点睛】
本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
5、4+2
【解析】
【分析】
取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.
【详解】
解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,
∵四边形ABCD为菱形,
∴AB=AD,
∵∠BAD=120°,
∴∠CAD=60°,
∴△ACD为等边三角形,
又∵DE=DG,
∴△DEG也为等边三角形.
∴DE=GE,
∵∠DEG=60°=∠FEF',
∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,
即∠DEF=∠GEF',
由线段EF绕着点E顺时针旋转60°得到线段EF',
所以EF=EF'.
在△DEF和△GEF'中,
,
∴△DEF≌△GEF'(SAS).
∴∠EGF'=∠EDF=60°,
∴∠F'GA=180°﹣60°﹣60°=60°,
则点F'的运动轨迹为射线GF'.
观察图形,可得A,E关于GF'对称,
∴AF'=EF',
∴BF'+AF'=BF'+EF'≥BE,
在Rt△BCH中,
∵∠H=90°,BC=4,∠BCH=60°,
∴,
在Rt△BEH中,BE===2,
∴BF'+EF'≥2,
∴△ABF'的周长的最小值为AB+BF'+EF'=4+2,
故答案为:4+2.
【点睛】
本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.
三、解答题
1、 (1)AE=t,AD=12﹣2t,DF=t
(2)见解析
(3)3,理由见解析
【解析】
【分析】
(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
(2)根据对边平行且相等的四边形是平行四边形证明;
(3)根据矩形的定义列出方程,解方程即可.
(1)
解:由题意得,AE=t,CD=2t,
则AD=AC﹣CD=12﹣2t,
∵DF⊥BC,∠C=30°,
∴DF=CD=t;
(2)
解:∵∠ABC=90°,DF⊥BC,
∴,
∵AE=t,DF=t,
∴AE=DF,
∴四边形AEFD是平行四边形;
(3)
解:当t=3时,四边形EBFD是矩形,
理由如下:∵∠ABC=90°,∠C=30°,
∴AB=AC=6cm,
∵,
∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
解得,t=3,
∵∠ABC=90°,
∴四边形EBFD是矩形,
∴t=3时,四边形EBFD是矩形.
【点睛】
此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
2、见详解
【解析】
【分析】
先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
【详解】
解:先作m的垂直平分线,取m的一半为AB,
以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
过A作BC的平行线,与过C作AB的平行线交于D,
则四边形ABCD为所求作矩形;
∵AD∥BC,CD∥AB,
∴四边形ABCD为平行四边形,
∵BC⊥AB,
∴∠ABC=90°,
∴四边形ABCD为矩形,
∵AB=,AC=m,
∴矩形的宽与对角线满足条件,
∴四边形ABCD为所求作矩形.
【点睛】
本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
3、 (1)△DCA;
(2)∠ABO+∠OCE=45°,理由见解析
(3)
【解析】
【分析】
(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
(1)
解:①∵CD∥OB,
∴∠ACD=∠BOA=90°,
又∵OB=CA,OA=CD,
∴△AOB≌△DCA(SAS);
故答案为:△DCA;
②如图所示,过点D作DR⊥BO交BO延长线于R,
由①可知△AOB≌△DCA,
∴CD=OA=2,AC=OB=3,
∵OC⊥OB,DR⊥OB,CD∥OB,
∴DR=OC=OA+AC=5(平行线间距离相等),
同理可得OR=CD=3,
∴BR=OB+OR=5,
∴;
故答案为:;
(2)
解:∠ABO+∠OCE=45°,理由如下:
如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
在△AOB和△WCA中,
,
∴△AOB≌△WCA(SAS),
∴AB=AW,∠ABO=∠WAC,
∵∠AOB=90°,
∴∠ABO+∠BAO=90°,
∴∠BAO+∠WAC=90°,
∴∠BAW=90°,
又∵AB=AW,
∴∠ABW=∠AWB=45°,
∵BE⊥OC,CW⊥OC,
∴BE∥CW,
又∵BE=OA=CW,
∴四边形BECW是平行四边形,
∴BW∥CE,
∴∠WJC=∠BWA=45°,
∵∠WJC=∠WAC+∠JCA,
∴∠ABO+∠OCE=45°;
(3)
解:如图3-1所示,连接AF,
∴,
∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
∵E是OB的中点,BE=OA,
∴BE=OE=OA,
∴OB=AC=2OA,
∵△CFQ是等腰直角三角形,CF=QF,
∴∠CFQ=∠CFA=90°,
∴,
∴,
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
4、 (1)见解析;
(2)①3;②
【解析】
【分析】
(1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;
(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;
②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.
(1)
证明:∵点D、E分别是边BC、AC的中点,
∴DEAB,BD=CD,
∵,
∴四边形ABDF是平行四边形,
∴AF=BD=CD,
∴四边形是平行四边形;
(2)
解:①∵点D、E分别是边BC、AC的中点,
∴DE=AB,
∵四边形是平行四边形,
∴DF=2DE=AB=3,
∵四边形是矩形,
∴AC=DF=3,
故答案为:3;
②∵四边形是菱形,
∴DF⊥AC,
∵DEAB,
∴AB⊥AC,
∴AD=BC=2.5,
∴AE=EC=2,
∵
∴
∴,
故答案为:.
【点睛】
此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.
5、 (1)见解析;
(2)①见解析;②.
【解析】
【分析】
(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;
(2)①由“射影定理”分别解得,,整理出,再结合即可证明;
②由勾股定理解得,再根据得到,代入数值解题即可.
(1)
证明:
(2)
①四边形ABCD是正方形
②在中,
在,
.
【点睛】
本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.
相关试卷
这是一份数学冀教版第二十二章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列命题不正确的是,已知等内容,欢迎下载使用。
这是一份数学八年级下册第二十二章 四边形综合与测试精品复习练习题,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步测试题,共34页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)