终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版八年级数学下册第二十二章四边形专项练习试卷(精选含答案)

    立即下载
    加入资料篮
    难点详解冀教版八年级数学下册第二十二章四边形专项练习试卷(精选含答案)第1页
    难点详解冀教版八年级数学下册第二十二章四边形专项练习试卷(精选含答案)第2页
    难点详解冀教版八年级数学下册第二十二章四边形专项练习试卷(精选含答案)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时练习

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时练习,共30页。试卷主要包含了如图,E,下列关于的叙述,正确的是,在中,若,则的度数是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )

    A.4 B.6 C.8 D.12
    2、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为(  )

    A.3 B.4 C.14 D.18
    3、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )

    A.3 B.6 C. D.
    4、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
    ①;②;③;④.

    A.①②③ B.①②④ C.①③④ D.②③④
    5、下列关于的叙述,正确的是( )
    A.若,则是矩形 B.若,则是正方形
    C.若,则是菱形 D.若,则是正方形
    6、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )

    A.80° B.90° C.100° D.110°
    7、在中,若,则的度数是( )
    A. B. C. D.
    8、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
    A.5或6 B.6或7 C.5或6或7 D.6或7或8
    9、十边形中过其中一个顶点有( )条对角线.
    A.7 B.8 C.9 D.10
    10、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )

    A.7 B.6 C.4 D.8
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、四边形ABCD中,AD∥BC,要使它平行四边形,需要增加条件________(只需填一个 条件即可).
    2、如图,在平行四边形ABCD中,

    (1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.
    (2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;
    (3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.
    3、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.

    4、如图所示,过六边形的顶点的所有对角线可将六边形分成_______个三角形.

    5、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

    (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
    (2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
    (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
    2、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.

    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.
    3、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.

    (1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
    (2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
    (3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
    4、如图,直线,线段分别与直线、交于点、点,满足.

    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
    (2)求证:四边形为菱形.(请补全下面的证明过程)
    证明:
    ____①____
    垂直平分

    ∴____②____
    ____③____



    ∴四边形是___④_____

    ∴四边形是菱形(______⑤__________)(填推理的依据).
    5、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.

    (1)求证:AE=CE;
    (2)猜想线段AE,EG和GF之间的数量关系,并证明.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.
    【详解】
    解:四边形为菱形,
    ,,,

    ,
    ∴,
    ∴,

    故选:.
    【点睛】
    此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.
    2、A
    【解析】
    【分析】
    由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.
    【详解】
    解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,
    过点B作BH⊥DC于点H,

    设CH=x,则DH=8-x,
    则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,
    解得:
    则:,
    则,
    故选:A.
    【点睛】
    本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
    3、B
    【解析】
    【分析】
    连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
    【详解】
    解:连接,

    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,AC=BD,
    ∵点是AC的中点, ∴,
    ∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,

    ∴,
    ∴是等边三角形,
    ∴∠BAA'=60°,
    ∴∠ACB=30°,
    ∵AB=3, ∴AC=2AB=6,
    ∴.
    即点B与点之间的距离为6.
    故选:B.
    【点睛】
    本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
    4、B
    【解析】
    【分析】
    根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴,,
    在与中,

    ∴,
    ∴,①正确;
    ∵,

    ∴,
    ∴,
    ∴,②正确;
    ∵GF与BG的数量关系不清楚,
    ∴无法得AG与GE的数量关系,③错误;
    ∵,
    ∴,
    ∴,
    即,④正确;
    综上可得:①②④正确,
    故选:B.
    【点睛】
    题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
    5、A
    【解析】
    【分析】
    由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
    【详解】
    解:中,,
    四边形是矩形,选项符合题意;
    中,,
    四边形是菱形,不一定是正方形,选项不符合题意;
    中,,
    四边形是矩形,不一定是菱形,选项不符合题意;
    中,,
    四边形是菱形,选项不符合题意;
    故选:.
    【点睛】
    本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
    6、B
    【解析】
    【分析】
    根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.
    【详解】
    解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,
    又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,
    ∴∠EBD=∠A′BE+∠DBC′=180°×=90°.
    故选B.
    【点睛】
    此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
    7、B
    【解析】
    【分析】
    利用平行四边形的对角相等即可选择正确的选项.
    【详解】
    解:四边形是平行四边形,



    故选:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.
    8、C
    【解析】
    【分析】
    实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
    【详解】
    解:如图,原来多边形的边数可能是5,6,7.

    故选C
    【点睛】
    本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
    9、A
    【解析】
    【分析】
    根据多边形对角线公式解答.
    【详解】
    解:十边形中过其中一个顶点有10-3=7条对角线,
    故选:A.
    【点睛】
    此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.
    10、A
    【解析】
    【分析】
    如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
    【详解】
    解:如图所示,连接AC,OB交于点D,
    ∵C是直线与y轴的交点,
    ∴点C的坐标为(0,2),
    ∵OA=4,
    ∴A点坐标为(4,0),
    ∵四边形OABC是矩形,
    ∴D是AC的中点,
    ∴D点坐标为(2,1),
    当直线经过点D时,可将矩形OABC的面积平分,
    由题意得平移后的直线解析式为,
    ∴,
    ∴,
    故选A.

    【点睛】
    本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
    二、填空题
    1、AD=BC
    【解析】

    2、 50° 130° 50° 100° 80° 100° 80°
    【解析】

    3、
    【解析】
    【分析】
    根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.
    【详解】
    如图,∵将纸片沿AE折叠,使点B落在点F处,
    ∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,

    ∵AD∥BC,
    ∴∠DAE=∠AED,
    ∴∠DAE=∠AED,
    ∴AD=DE=4,
    在Rt△ADF中,由勾股定理得:,
    ∴EF=DE-DF=,
    ∴BE=EF=,
    故答案为:.
    【点睛】
    本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.
    4、4
    【解析】
    【分析】
    从边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成个三角形,依此作答.
    【详解】
    解:过六边形的顶点的所有对角线可将六边形分成个三角形.
    故答案为4.
    【点睛】
    本题主要考查多边形的对角线,从边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为.
    5、
    【解析】
    【分析】
    根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴,,,
    ∵,BE是的角平分线,
    ∴,
    ∴,
    在中,根据勾股定理得,

    ∵,
    ∴,
    ∵EC平分,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.
    三、解答题
    1、 (1)=
    (2)∠P=90°-∠A
    (3)∠P=180°-∠BAD-∠CDA,探究见解析
    【解析】
    【分析】
    (1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
    (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
    (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
    (1)
    ∠DBC+∠ECB-∠A=180°,
    理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
    ∴∠DBC+∠ECB-∠A=180°,
    故答案为:=;
    (2)
    ∠P=90°-∠A,
    理由是:∵BP平分∠DBC,CP平分∠ECB,
    ∴∠CBP=∠DBC,∠BCP=∠ECB,
    ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
    ∵∠DBC+∠ECB=180°+∠A,
    ∴∠P=180°-(180°+∠A)=90°-∠A.
    故答案为:∠P=90°-∠A,
    (3)
    ∠P=180°-∠BAD-∠CDA,
    理由是:如图,

    ∵∠EBC=180°-∠1,∠FCB=180°-∠2,
    ∵BP平分∠EBC,CP平分∠FCB,
    ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
    ∴∠3+∠4=180°-(∠1+∠2),
    ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
    又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
    ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
    【点睛】
    本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
    2、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,

    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
    3、 (1)①见解析;②见解析
    (2)是,见解析
    (3)
    【解析】
    【分析】
    (1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
    ②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
    (2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
    (3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
    (1)
    证明:①∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    在△ABD与△EDC中,

    ∴△ABD≌△EDC(ASA),
    即△ABM≌△EMC;
    ②由①得△ABD≌△EDC,
    ∴AB=ED,
    ∵AB∥ED,
    ∴四边形ABDE是平行四边形;

    (2)
    成立.理由如下:
    如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
    ∵AD∥EC,ML∥DC,
    ∴四边形MDCL为平行四边形,
    ∴ML=DC=BD,
    ∵ML∥DC,
    ∴∠FML=∠MBD,
    ∵AD∥EC,
    ∴∠BMD=∠MFL,∠AMB=∠EFM,
    在△BMD和△MFL中
    ∠MBD=∠FML∠BMD=∠MFLBD=ML,
    ∴△BMD≌△MFL(AAS),
    ∴BM=MF ,
    ∵AB∥ME,
    ∴∠ABM=∠EMF,
    在△ABM和△EMF中,

    ∴△ABM≌△EMF(ASA),
    ∴AB=EM,
    ∵AB∥EM,
    ∴四边形ABME是平行四边形;

    (3)
    解:过点D作DG∥BN交AC于点G,

    ∵M为AD的中点,DG∥MN,
    ∴MN=DG,
    ∵D为BC的中点,
    ∴DG=BN,
    ∴MN=BN,
    ∴,
    由(2)知四边形ABME为平行四边形,
    ∴BM=AE,
    ∴.
    【点睛】
    本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
    4、 (1)见解析
    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
    【解析】
    【分析】
    (1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    (2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
    (1)
    解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    如图所示

    (2)
    证明:,
    ∠2①,
    垂直平分 ,
    ,,
    ∴②△EOC,
    OF③,



    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
    【点睛】
    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
    5、 (1)见解析
    (2)AE2+ GF2=EG2,证明见解析
    【解析】
    【分析】
    (1)根据“SAS”证明△ADE≌△CDE即可;
    (2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.
    (1)
    证明:∵四边形ABCD是正方形,
    ∴AD=CD,∠ADE=∠CDE,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴AE=CE;
    (2)
    AE2+ GF2=EG2,理由:
    连接CG
    ∵△ADE≌△CDE,
    ∴∠1=∠2.
    ∵G为FH的中点,
    ∴CG=GF=GH=FH,
    ∴∠6=∠7.
    ∵∠5=∠6,
    ∴∠5=∠7.
    ∵∠1+∠5=90°,
    ∴∠2+∠7=90°,即∠ECG=90°,
    在Rt△CEG中,CE2+CG2=EG2,
    ∴AE2+ GF2=EG2.

    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共27页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试精品复习练习题:

    这是一份数学八年级下册第二十二章 四边形综合与测试精品复习练习题,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共24页。试卷主要包含了下列命题是真命题的有个.,下列命题不正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map