![2021-2022学年最新鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含详细解析)01](http://img-preview.51jiaoxi.com/2/3/12734346/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含详细解析)02](http://img-preview.51jiaoxi.com/2/3/12734346/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含详细解析)03](http://img-preview.51jiaoxi.com/2/3/12734346/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第五章 基本平面图形综合与测试测试题
展开六年级数学下册第五章基本平面图形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若的补角是,则的余角是( )
A. B. C. D.
2、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
3、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
4、下列说法中正确的是( )
A.两点之间所有的连线中,直线最短 B.射线AB和射线BA是同一条射线
C.一个角的余角一定比这个角大 D.一个锐角的补角比这个角的余角大90°
5、如图,在方格纸中,点A,B,C,D,E,F,H,K中,在同一直线上的三个点有( ).
A.3组 B.4组 C.5组 D.6组
6、①线段,AB的中点为D,则;②射线;③OB是的平分线,,则;④把一个周角6等分,每份是60°.以上结论正确的有( )
A.②③ B.①④ C.①③④ D.①②③
7、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )
A.15 B.17 C.19 D.20
8、如图,已知O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,若OC是的平分线,则下列结论正确的是( )
A. B.
C. D.
9、如图,点A,B在线段EF上,点M,N分别是线段EA,BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长为( )cm
A.10 B.11 C.12 D.13
10、上午8:30时,时针和分针所夹锐角的度数是( )
A.75° B.80° C.70° D.67.5°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、______°.
2、北京时间21点30分,此时钟表的时针和分针构成的角度是____________.
3、如图,已知点O在直线AB上,OC⊥OD,∠BOD:∠AOC=3:2,那么∠BOD=___度.
4、将一副三角板如图所示摆放,使其中一个三角板60°角的顶点与另一个三角板的直角顶点重合,若已知,则的度数是__________;
5、直线上有A、B、C三点,AB=4,BC=6,则AC=___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知线段AB
(1)请按下列要求作图:
①延长线段AB到C,使;
②延长线段BA到D,使;
(2)在(1)条件下,请直接回答线段BD与线段AC之间的数量关系;
(3)在(1)条件下,如果AB=2cm,请求出线段BD和CD的长度.
2、已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.
(1)如图1,若∠AOD=∠AOB,则∠DOE=________;
(2)如图2,若OF是∠AOD的角平分线,求∠AOE−∠DOF的值;
(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒12°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<)后得到∠COP=∠AOQ,求t的值.
3、已知O是直线MN上一点,∠MOA=40°,∠AOB=90°,∠COD与∠AOB都在直线MN的上方,且射线OC在射线OD的左侧.
(1)如图1,射线OC在∠AOB的内部,如果∠COD=90°,那么图中与∠AOC相等的角是 ,其依据是: .
(2)如图2,用直尺和圆规作∠AOB的平分线OP,如果∠COD=60°,且OC平分∠AOP,那么∠DON= °;(保留作图痕迹,不要求写出作法和结论)
(3)如果∠COD=60°,设∠AOC=m°(0<m<80,且m≠30),用含m的式子表示∠BOD的度数.(直接写出结论)
4、如图,已知点A,B,C,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)
5、如图,两条直线AB,CD相交于点O,且∠AOC=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s.两条射线OM,ON同时运动,运动时间为t秒.(本题出现的角均小于平角)
(1)当t=2时,∠MON=_______,∠AON=_______;
(2)当0<t<12时,若∠AOM=3∠AON=60°.试求出t的值;
(3)当0<t<6时,探究的值,问:t满足怎样的条件是定值;满足怎样的条件不是定值?
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
2、A
【解析】
【分析】
根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.
【详解】
解:①射线AB和射线BA表示不是同一条射线,故此说法错误;
②两点之间,线段最短,故此说法正确;
③38°15'≠38.15°,故此说法错误;
④直线不能度量,所以“画直线AB=3cm”说法是错误的;
⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;
综上所述,正确的是②,
故选:A.
【点睛】
本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.
3、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
4、D
【解析】
【分析】
分别根据线段的性质、射线、余角、补角等定义一一判断即可.
【详解】
解:A.两点之间所有的连线中,线段最短,故此选项错误;
B.射线AB和射线BA不是同一条射线,故此选项错误;
C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;
D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;
故选:D
【点睛】
本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.
5、C
【解析】
【分析】
利用网格作图即可.
【详解】
如图:
在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,
故选:C
【点睛】
此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.
6、B
【解析】
【分析】
分别根据中点的定义,射线的性质,角平分线的定义,周角的定义逐项判断即可求解.
【详解】
解:①线段,AB的中点为D,则,故原判断正确;
②射线没有长度,故原判断错误;
③OB是的平分线,,则,故原判断错误;
④把一个周角6等分,每份是60°,故原判断正确.
故选:B
【点睛】
本题考查了中点的定义,射线的理解,角平分线的性质,周角的定义等知识,熟知相关知识是解题关键.
7、D
【解析】
【分析】
由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.
【详解】
解: M是AB的中点,N是CD的中点,
故选D
【点睛】
本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.
8、B
【解析】
【分析】
先求解利用角平分线的定义再求解从而可得答案.
【详解】
解:
平分
故选B
【点睛】
本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.
9、C
【解析】
【分析】
由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.
【详解】
解:∵EA:AB:BF=1:2:3,
可以设EA=x,AB=2x,BF=3x,
而M、N分别为EA、BF的中点,
∴MA=EA=x,NB=BFx,
∴MN=MA+AB+BN=x+2x+x=4x,
∵MN=16cm,
∴4x=8,
∴x=2,
∴EF=EA+AB+BF=6x=12,
∴EF的长为12cm,
故选C.
【点睛】
本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
10、A
【解析】
【分析】
根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,
此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.
故选:A.
【点睛】
本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.
二、填空题
1、42.6
【解析】
【分析】
根据角度进制的转化求解即可,.
【详解】
解:
42.6
故答案为:42.6
【点睛】
本题考查了角度进制的转化,掌握角度进制是解题的关键.
2、105
【解析】
【分析】
根据题意,得3、9点所在直线和6、12点所在直线垂直,通过角度的乘除和和差运算,即可得到答案.
【详解】
如图
∵3、9点所在直线和6、12点所在直线垂直
∴北京时间21点30分时,分针和x的夹角为:
∴此时钟表的时针和分针构成的角度是:
故答案为:105.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角度的乘除和和差计算,即可得到答案.
3、54
【解析】
【分析】
根据平角等于180°得到等式为:∠AOC+∠COD+∠DOB=180°,再由∠COD=90°,∠BOD:∠AOC=3:2即可求解.
【详解】
解:∵OC⊥OD,
∴∠COD=90°,
设∠BOD=3x,则∠AOC=2x,
由题意知:2x+90°+3x=180°,
解得:x=18°,
∴∠BOD=3x=54°,
故答案为:54°.
【点睛】
本题考查了平角的定义,属于基础题,计算过程中细心即可.
4、28°28′
【解析】
【分析】
根据∠DAE=90°,,求出∠EAC的度数,再根据∠1=∠BAC −∠EAC即可得出答案.
【详解】
解:∵∠DAE=90°,,
∴∠EAC=31°32′,
∵∠BAC=60°,
∴∠1=∠BAC −∠EAC=60°-31°32′=28°28′,
故答案为:28°28′.
【点睛】
本题主要考查了余角的概念和度分秒的换算,关键是求出∠EAC的度数,是一道基础题.
5、10或2##2或10
【解析】
【分析】
根据题目可分两种情况,C点在B点右测时,C在B左侧时,根据两种情况画图解析即可.
【详解】
解:①
如图一所示,当C点在B点右测时:AC=AB+BC=4+6=10;
②
如图二所示:当C在B左侧时:AC=BC-AB=6-4=2,
综上所述AC等于10或2,
故答案为:10或2.
【点睛】
本题考查,线段的长度,点与点之间的距离,以及分类讨论思想,在解题中能够将分类讨论思想与几何图形相结合是本题的关键.
三、解答题
1、 (1)①画图见解析;②画图见解析
(2)BD=1.5AC;
(3)cm,cm
【解析】
【分析】
(1)①先延长 再作即可;②先延长 再作即可;
(2)先证明 从而可得答案;
(3)由 结合 从而可得答案.
(1)
解:如图所示,BC、AD即为所求;
(2)
解:
(3)
解:∵AB=2cm,
∴AC=2AB=4cm,
∴AD=4cm,
∴BD=4+2=6cm,
∴CD=2AD=8cm.
【点睛】
本题考查的是作一条线段等于已知线段,线段的和差运算,熟练的利用作图得到的已知信息求解未知信息是解本题的关键.
2、 (1)25°
(2)∠AOE-∠DOF=40°
(3)t的值为秒或秒
【解析】
【分析】
(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;
(2)先由角平分线定义得∠AOF=∠DOF=∠AOD,∠AOE=∠AOC,再证∠AOE-∠AOF=∠COD,即可得出答案;
(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.
(1)
解:(1)∵∠AOB=90°,
∴∠AOD=∠AOB=30°,
∵∠COD=80°,
∴∠AOC=∠AOD+∠COD=30°+80°=110°,
∵OE平分∠AOC,
∴∠AOE=∠COE=∠AOC=55°,
∴∠DOE=∠AOE-∠AOD=55°-30°=25°;
(2)
解:∵OF平分∠AOD,
∴∠AOF=∠DOF=∠AOD,
∵OE平分∠AOC,
∴∠AOE=∠AOC,
∴∠AOE-∠AOF=∠AOC-∠AOD=(∠AOC-∠AOD)=∠COD,
又∵∠COD=80°,
∴∠AOE-∠DOF=×80°=40°;
(3)
解:分三种情况:
①当射线OP、OQ在∠AOC内部时,即0<t≤时,
由题意得:∠POE=(12t)°,∠DOQ=(8t)°,
∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,
∵∠COP=∠AOQ,
∴55-12t=(30-8t),
解得:t=(舍去);
②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即<t≤时,
则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴55-12t=(8t-30),
解得:t=;
③当射线OP、OQ在∠AOC外部时,即<t<时,
则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴12t-55=(8t-30),
解得:t=;
综上所述,t的值为秒或秒.
【点睛】
本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.
3、 (1),等角的余角相等
(2)图见解析,
(3)或
【解析】
【分析】
(1)根据等角的余角相等解决问题即可.
(2)根据,求出,即可.
(3)分两种情形:当时,根据求解,如图中,当时,根据,求解即可.
(1)
解:如图1中,
,
,
(等角的余角相等),
故答案为:等角的余角相等.
(2)
解:如图2中,如图,射线即为所求.
,,
,
平分,
,
平分,
,
,
.
(3)
解:如图中,当时,
.
如图中,当时,
.
综上所述,满足条件的的值为或.
【点睛】
本题考查作图复杂作图,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线和射线的定义画图即可;
(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;
(1)
如图所示;
(2)
如图所示,
或
【点睛】
本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.
5、 (1)144°,66°
(2)秒或10秒
(3)当0<t<时,的值是1;当<t<6时,的值不是定值
【解析】
【分析】
(1)根据时间和速度分别计算∠BOM和∠DON的度数,再根据角的和与差可得结论;
(2)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t<12时,分别根据已知条件列等式可得t的值;
(3)分两种情况,分别计算∠BON、∠COM和∠MON的度数,代入可得结论.
(1)
由题意得:
当t=2时,
∠MON=∠BOM+∠BOD+∠DON=2×15°+90°+2×12°=144°,
∠AON=∠AOD-∠DON=90°-24°=66°,
故答案为:144°,66°;
(2)
当ON与OA重合时,t=90÷12=7.5(s)
当OM与OA重合时,t=180°÷15=12(s)
如图所示,①当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°
由∠AOM=3∠AON-60°,可得180-15t=3(90-12t)-60,解得t=,
②当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,
由∠AOM=3∠AON-60°,可得180-15t=3(12t-90)-60,解得t=10,
综上,t的值为秒或10秒;
(3)
当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,
∴15t+90+12t=180,解得t=,
如图所示,①当0<t<时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,
∴(定值),
②当<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,
,
∴(不是定值).
综上所述,当0<t<时,的值是1;当<t<6时,的值不是定值.
【点睛】
本题主要考查了一元一次方程的应用,角的和差关系的计算,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共24页。试卷主要包含了下列四个说法,如图,点在直线上,平分,,,则,如果A,如图所示,点E等内容,欢迎下载使用。
初中数学第五章 基本平面图形综合与测试随堂练习题: 这是一份初中数学第五章 基本平面图形综合与测试随堂练习题,共21页。试卷主要包含了已知,则∠A的补角等于,下列命题中,正确的有等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后测评: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后测评,共19页。试卷主要包含了上午10,下列命题中,正确的有等内容,欢迎下载使用。