![2021-2022学年度强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形同步训练试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12734298/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形同步训练试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12734298/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形同步训练试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12734298/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第五章 基本平面图形综合与测试课后练习题
展开
这是一份初中数学第五章 基本平面图形综合与测试课后练习题,共29页。试卷主要包含了已知与满足,下列式子表示的角等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A.①④ B.①③ C.②④ D.③④2、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )A.4cm B.36cm C.4cm或36cm D.4cm或2cm3、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )A.15 B.17 C.19 D.204、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )A. B.C. D.5、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )A. B. C. D.6、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的( )A. B. C. D.7、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )A.①② B.①③ C.②④ D.③④8、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )A.2 B.2.5 C.3 D.3.59、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )A.两点确定一条直线 B.两点之间,线段最短C.射线只有一个端点 D.过一点有无数条直线10、上午10:00,钟面上时针与分针所成角的度数是( )A.30° B.45° C.60° D.75°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则它的余角是______.2、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.3、计算:________°.4、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.5、如图,,则射线表示是南偏东__________的方向.三、解答题(5小题,每小题10分,共计50分)1、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)(1)若,当点运动了,求的值;(2)若点运动时,总有,试说明;(3)如图2,已知,是线段所在直线上一点,且,求的值.2、如图,直线、相交于点,,.(1)若,则 __________.(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)3、如图(1),直线、相交于点,直角三角板边落在射线上,将三角板绕点逆时针旋转180°.(1)如图(2),设,当平分时,求(用表示)(2)若,①如图(3),将三角板旋转,使落在内部,试确定与的数量关系,并说明理由.②若三角板从初始位置开始,每秒旋转5°,旋转时间为,当与互余时,求的值.4、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.5、如图,将两块三角板的直角顶点重合.(1)写出以C为顶点相等的角;(2)若∠ACB=150°,求∠DCE的度数. -参考答案-一、单选题1、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.2、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵,∴AB=BD,∵点C为线段AB的中点,∴BC=,∵,∴,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵,∴AD=,∵点C为线段AB的中点,∴AC=BC=,∵,∴-=6,∴AB=36cm,故选C.【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.3、D【解析】【分析】由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.【详解】解: M是AB的中点,N是CD的中点, 故选D【点睛】本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.4、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.5、B【解析】【分析】根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.【详解】解:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG-∠CBG=60°-45°=15°.故选B.【点睛】此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.6、C【解析】【分析】把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的.【详解】解:把大正方形进行切割,如下图,由图可知,正方形可分割成16个面积相等的等腰直角三角形,号正方形,由两个等腰直角三角形组成,占整个正方形面积的.故选 C.【点睛】本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.7、B【解析】【分析】将每项加上判断结果是否等于90°即可.【详解】解:①∵+=90°,故该项是的余角;②∵,∴,∴+=90°+,故该项不是的余角;③∵,∴+=90°,故该项是的余角;④∵,∴+=120°,故该项不是的余角;故选:B.【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.8、C【解析】【分析】由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.【详解】解:∵,,∴BC=12,∴AC=AB+BC=18,∵D是AC的中点,∴,∴BD=AD-AB=9-6=3,故选:C.【点睛】此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.9、A【解析】【分析】两个学生看成点,根据两点确定一条直线的知识解释即可.【详解】∵两点确定一条直线,∴选A.【点睛】本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.10、C【解析】【分析】钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,【详解】10时整,时针与分针组成的角的度数是30°×2=60°.故选:C.【点睛】本题要在了解钟面结构的基础上进行解答.二、填空题1、【解析】【分析】根据余角的定义求即可.【详解】解:∵,∴它的余角是90°-=,故答案为:.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.2、 45° 127.5°【解析】【分析】根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.【详解】解:根据题意:钟面上4时30分,时针与分针的夹角是 ;15分钟后时针与分针的夹角是 .故答案为:45°,127.5°【点睛】本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键.3、60.3【解析】【分析】根据1=()°先把18化成0.3°即可.【详解】∵∴18=18=0.3°∴6018=60.3故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.4、105°或75°【解析】【分析】分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.【详解】解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,∵∠B=45°,∠BEF=90°,∴∠CFO=∠BFE=45°,∵∠DCO=60°,∴∠COF=15°∴∠AOC=90°+15°=105°;②如图2,AB⊥CD于G,OA交DC于H,∵∠A=45°,∠AGH=90°,∴∠CHO=∠AHG=45°,∵∠DCO=60°,∴∠AOC=180°-60°-45°=75°;故答案为:105°或75°.【点睛】此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.5、【解析】【分析】如图,利用互余的含义,先求解的大小,再根据方向角的含义可得答案.【详解】解:如图, 射线表示是南偏东的方向.故答案为:【点睛】本题考查的是互余的含义,方向角的含义,掌握“方向角的含义”是解本题的关键.三、解答题1、 (1)2cm(2)见解析(3)或【解析】【分析】(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;(2)根据题意可得出,.再由,可求出,从而可求出,即证明;(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.(1)∵时间时,,,∴;(2)∵,,又∵,∴,∴,∴,∴;(3)①如图,当点在线段上时,∵,∴,∴,∴; ②如图,当点在线段的延长线上时,∵,∴,∴, ③如图,当点在线段的延长线上时,,这种情况不可能,综上可知,的值为或.【点睛】本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.2、 (1)30°(2)11或23秒(3)或【解析】【分析】(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.(1)解:∵,,∴∠EOB=90°-∠COE=90°-30°=60°,∵,∴∠BOF=90°-∠EOB=90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵平分,∴,∴,设运动秒时,平分,根据题意得:,解得:;情况二∵平分,∴,设运动秒时,平分,根据题意得:,解得:;综上:运动11或23秒时,直线平分;(3)解:∵射线是的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=,∴,∵∠COE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°+∠COP=90°+,∴;综上:或.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.3、 (1)(2)①,理由见解析;②4秒或22秒【解析】【分析】(1)利用角的和差关系求解 再利用角平分线的含义求解即可;(2)①设,再利用角的和差关系依次求解, ,, 从而可得答案;②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.再分三种情况讨论:如图,当时 ,,如图,当时 ,,如图,当时,,,再利用互余列方程解方程即可.(1)解: ∵平分 ∴(2)解:①设,则, ∴∴, ∴②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.如图,当时 ,, 则, ∴如图,当时 ,,则,方程无解,不成立如图,当时,,,则, ∴综上所述秒或22秒【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.4、 (1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴x+=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.5、 (1)∠ACE=∠BCD,∠ACD=∠ECB(2)30°【解析】【分析】(1)根据余角的性质即可得到结论;(2)根据角的和差即可得到结论.(1)∵∠ACD=∠BCE=90°,∴∠ACE+∠DCE=∠BCD+∠DCE=90°,∴∠ACE=∠BCD;∠ACD=∠ECB=90°(2)∵∠ACB=150°,∠BCE=90°,∴∠ACE=150°-90°=60°.∴∠DCE=90°-∠ACE=90°-60°=30°【点睛】本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了已知,则的补角等于,下列说法中正确的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题,共22页。试卷主要包含了上午8,如图,OM平分,,,则等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试测试题,共21页。试卷主要包含了如图所示,B,下列说法正确的是,在9,如图,下列说法不正确的是,下列说法中正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)